

Computational Approaches for Optimizing Decarbonization of Cement Plants using Solvent Based Carbon Capture

Michael Matuszewski Associate Technical Director CCSI²

Benjamin Omell Technical Project Lead - CCSI²

FECM Cement and Lime Decarbonization Workshop Hilton Garden Inn, Canonsburg, PA July 20th, 2023

🔆 West Virginia University. 🗯

Carnegie Mellon

CCSI² – Modeling, Optimization, and Technical Risk Reduction

Motivation for Modeling Cement Plant Decarbonization

- Assess application of conventional and novel carbon capture processes for industrial applications
- Ensure modeling results respond to changes in process conditions
- Ensure base plant performance, especially changes in product quality, is captured in modeling
- Optimize CO₂ capture process design, optimization, and integration with base plant considering effects on product

Integrated Cement Process Submodules

Inputs:

- Lime saturation factor (LSF)
- Silica ratio (SR)
- Alumina ratio (AR)
- Limestone ratio (LR)

Output:

• Mass fraction of $CaCO_3$, CaO, SiO₂, Al₂O₃, and Fe₂O₃

Inputs:

- Mass compositions of raw materials
- Peak gas temperature

Location of peak gas temperature

- Solid flow rate
- Temperature of gas at inlet

Output:

- Compositions of clinker
- Emission of CO₂ from calcination reaction
- Heat required by kiln

Inputs:

- Temperature of flue gas
- Heat duty (heat required by the kiln for clinker production)
- Limestone ratio

Output:

- Flue gas flow rate
- Mole composition of flue gas
- Flow rate of required fuel

MEA Aspen

Inputs:

•

- Flue gas flow rate
- Mole composition of flue gas
- Absorber packing height
- Stripper packing height
- Lean loading
- Heat exchange pinch point

Output:

- Stripper reboiler duty
- Other

Uncertainty Quantification & Bayesian Inference EXAMPLE: VLE Models

VLE Data/Model Comparison at 40°C

5

UQ of a Rotary Kiln Model for Cement Production: Uncertainty Analysis Results

Uncertainty of outputs

UQ analysis of MEA Solvent System for CO₂ Capture

Key performance Indicators (KPIs)	Flue gas (tonne/hr) [1078, 1617]	Heat exchange pinch point (K) [5, 45]	CO ₂ mol% [14, 33]
SRD (MJ/kg) [3.17, 4.35]			
Absorber Diameter (m) [10.85, 14.11]			
Stripper Diameter (m) [8.06, 13.48]			
Lean Loading Flowrate (tonne/hr) [2926, 9006]			
Heat Exchange Area (sqm) [3029, 70385]			

Remarks:

- Size of the MEA absorber and stripper columns increase as flue gas flow rate and CO₂ content increases
- Absorber/stripper packing height, and lean loading has smaller impact compared to flue gas flow rate, heat exchange pinch point, and CO₂ composition. Details shown in <u>CCS - UQ analysis</u> of MEA in FOQUS

Integrated Cement Kiln Model and MEA CCS Model: Optimization **Problem**

Optimization Problem

MATLAB Model

- · Mass and Energy Balances
- Melting/Coating Formation
- Rx and Kinetic model

	Process Parameter (Inputs)	Units	Initial Guess	Min	Мах
Kiin Model	Lime saturation factor (LSF)		1.27	1.10	1.36
	Silica ratio (SR)		2.15	2.10	2.90
	Alumina ratio (AR)		1.00	0.62	1.13
	Limestone to lime ratio (LR)		0.46	0.42	0.56
	Peak gas temperature	К	1970	1970	2180
	Location of peak gas temperature		0.75	0.6	0.9
	Flow rate of raw material	kg/s	30.0	30	60
MEA Model	Absorber packing height	m	100	20	100
	Stripper packing height	m	31.06	12	48
	Lean loading	mol CO ₂ /mol MEA	0.156	0.10	0.18
	Heat exchange pinch point	К	5	5	45

Decision Variables

Integrated Cement Kiln Model and MEA CCS Model: Optimization **Results**

Optimal Operating Variables in the Kiln

Kiln Inputs	Optimum Value		
Lime saturation factor (LSF)	1.12		
Silica ratio (SR)	2.11		
Alumina ratio (AR)	1.14		
Limestone to lime ratio (LR)	0.43		
Peak gas temperature (K)	1970		
Location of peak gas temperature	0.75		
Flow rate of raw material (kg/s)	30		
Clinker composition			
C ₃ S (alite)	0.519		
C ₂ S (belite)	0.249		
C ₄ AF (ferrite)	0.132		
C ₃ A (aluminate)	0.079		
Total clinker composition (%)	98		

-	
and an and a second second	
	1

KPIs	from Kiln	Baseline case	
	CO ₂ : 17.7 mol%	CO2: 18.9 mol%	
Flue gas flow rate (tonne/hr)	1125.9	1347.3	
CO ₂ captured (tonne/hr)	264.5	336.0	
Absorber stage #	100	100	
Stripper stage #	60	60	
SRD (MJ/kg CO ₂ captured)	3.20	3.22	
Liquid/gas (kg solvent/kg flue gas)	3.11	3.19	
Heat exchange area (sqm)	38311	46900	
Absorber diameter (m)	11.27	12.23	
Stripper diameter (m)	8.40	9.45	

DFO Solver: Nlopt (88 iterations, ~2hr) Objective Function (SRD) = 3.20 [MJ/kg CO₂ captured]

Optimal Designs of MEA System

Comont flue das

Optimization of an Integrated Cement Plant with MEA Carbon Capture Process

Accomplishments

- Improved CCS heat/energy consumption while maintaining high quality cement
- Developed a rotary kiln model in MATLAB
- Optimized the design of an MEA-based carbon capture system for cement industry
- Optimized the integrated cement kiln plant and MEA CCS system in FOQUS
- Uncertainty quantification of the integrated model

Opportunities for Industrial Collaboration

- More detailed and responsive **cement plant models**
- Understand opportunities for thermal integration
- Validate model of product quality with operational data
- Detailed understanding of uncertainty and its impacts on key process indicators
- CCSI² can help guide pilot test designs to maximize value of data to refine understanding
- Refined models leveraged for **optimizing** decarbonized cement plant operation

Acknowledgements

Benjamin Omell Mike Matuszewski (*) Brandon Paul (*) Miguel Zamarripa (*) Daison Yancy Caballero (*)

(*) NETL Support Contractor

We graciously acknowledge funding from the U.S. Department of Energy, Office of Fossil Energy and Carbon Management, through the Point Source Carbon Capture Program

For more information

Michael Matuszewski (<u>michael.matuszewski@netl.doe.gov</u>) Benjamin Omell (<u>Benjamin.Omell@netl.doe.gov</u>) Daison Yancy Caballero (<u>Daison.YancyCaballero@netl.doe.gov</u>) Brandon Paul (<u>Brandon.Paul@netl.doe.gov</u>) Miguel Zamarripa (<u>Miguel.Zamarripa-Perez@netl.doe.gov</u>)

Summary

- Kiln model standalone:
 - The peak gas temperature and the mass flow rate of raw meal are the most sensitive variables that have a significant impact on the flue gas conditions and clinker production.
 - Alite/belite content have the largest standard deviation because the large variability of the composition of raw meal, while CO₂ emissions and energy have low standard deviation with mean values of 18.9% CO₂ in the flue gas and 7 MJ/kg of clinker, respectively.
- MEA model standalone:
 - Flue gas flow rate and CO₂ composition has biggest effect on the size of the plant
 - With fixed flue gas flow rate and CO₂ composition
 - The optimized lean loading is around 1.6;
 - The optimized heat exchange pinch point gained at it lower bound;
 - The optimized absorber packing height gained at it upper bound
- Cement-MEA Integrated Model:
 - With given cement quality, the optimized CO₂ composition is **17.7 mol%**
 - The optimized integrated model has SRD similar as the MEA standalone model, which is around 3.2 MJ/kg CO₂ captured

Future Work – EY23 Superstructure Optimization

- Develop costing framework for cryogenic capture process:
 - Economic methods for cryogenic capital and operating expenditures, including tools for scale-up, sizing and year-index adjustments
 - Techno-economic analysis/optimization compared to kiln-MEA system
- Quantify feasibility of cryogenic capture for alternative emission point sources:
 - Assess capture feasibility from low CO_2 flue gases, such as from steel plants
 - Direct comparison with solvent/sorbent systems for power plant emissions
 - Development of a combined separation membrane-cryogenics model, with process and economic assessment

Future Work – EY24 Model Improvements & IDAES Collaboration

- Develop a rigorous vapor-liquid-solid, kinetics-based reaction model and equilibrium reactor model:
 - Properly account for impact of CO₂ concentration on equilibrium
 - Incorporate co-recovery desublimation of Hg, HCl, NO_x and SO_x
 - Account for solid CO₂ solubility in liquid isopentane
- Requirements for new models:
 - Temperature data in the cryogenic range, typically 125-200 K
 - Corresponding $K_{eq} = \frac{y_{CO_2}}{x_{CO_2}=1}$ data, where y_{CO_2} is the mole fraction of CO₂ for mole fractions in the range 14-33 % CO₂, and 1-14% CO₂ if available, for multicomponent flue gas mixtures containing O₂, Ar and balance N₂

Cryogenic Carbon Capture with External Cooling Loop Model Overview

EY22 - Direct Liquid Contact Column

- Incoming natural gas (pre-combustion) or flue gas (post-combustion) bubbles up through staged sieve plate trays
- Cold contact liquid (isopentane) is delivered to each tray which has ~5 cm of liquid height¹
- · Gas and liquid mix in counterflow
- Solid flows out with liquid as slurry, preventing fouling from ice formation
- Theoretically, impurities such as SO_x, NO_x, HCI, Hg desublimate here as well → will be a focus of future work.

Figure Source: ¹Jensen et al., Int J Greenh Gas Con 42 (2015) 200-212 18/18

EY22: Refinement of VSE models for cryogenic carbon capture

Accomplishments

- Extensive literature review of cryogenic CO₂ thermodynamics and capture technologies
- Developed an initial vapor-solid equilibrium (VSE) desublimation model of binary CO₂-N₂
- Implemented VSE model via Aspen Plus Salt Chemistry module and RGibbs block
- Selected a base case flowsheet¹ and began process modeling

Salt Chemistry VSE Model

CCCSI²

¹Jensen et al., Int J Greenh Gas Con 42 (2015) 200-212 ²Nasrifar et al., Cryogenics 121 (2022) 103404

Aspen Plus Gibbs Reactor Modeling

Salt Chemistry VSE Model - Improvement & Validation

- The Jensen CO₂/N₂ model is well correlated, but for the form required by Aspen does not represent multicomponent flue gas (O₂, Ar, pollutants) well at cryogenic conditions where solid forms (expect 90% capture from 13.53 mol% CO₂ feed at 155.85 K⁴)
- New data⁴ was obtained to fit a surrogate model for the equilibrium constant for typical compositions (1-14 mol% CO₂, 3 mol% O₂, <100 ppm each of SO_x, NO_x, HCI, balance N₂) and temperatures (113-157K)
- We validated the results below for Flue Gas with a correction of E = 0.03439 for $P_{ref} = 101.325 \ kPa$:

Quantity	Flue Gas	Jensen	³ Pure CO ₂
Heat of Fus. (Δh_m), kJ/mol	19.35	26.16	26.20
Desub. Temp. (T_m), K	175.66	195.77	194.65
Δ Heat Cap. (Δ C_p), J/mol-K	14.26	12.78	14.25

³Nasrifar et al., Cryogenics 121 (2022) 103404 ⁴Baxter, L.; Baxter, A.; Burt, S. PCC 2009, Volume 1.

Process Model - Full CCC ECL Flowsheet, Annotated

Process Model – Column Optimization

• Optimize column to solve for stage temperatures and liquid delivery:

 $\min_{\hat{x}} f(\hat{x}) \quad s.t. \ \hat{x}^L \leq \hat{x} \leq \hat{x}^U, \quad h(\hat{x}) = 0, \quad g(\hat{x}) \leq 0$

Where f represents the objective function, \hat{x} is the vector of decision variables bounded by the minimum values \hat{x}^L and maximum values \hat{x}^{U} , $h(\hat{x})$ represents the fixed CO₂ capture percentage and material/energy balances calculated internally to Aspen, and $q(\hat{x})$ represents inequality constraints.

 \rightarrow Maximizing slurry temperature keeps product close to 175 K, reducing duty to melt pure solid CO₂ downstream and introducing a natural upper bound of 175 K to prevent a diverging objective:

$$\max T_{SLUR}(T_{i} \text{ for } i \in [1, 10], D_{i} \text{ for } i \in [1, 9])$$
s.t.
$$100 \le T_{i} \le 200 \text{ for } i \in [1, 10]$$

$$0.05 \le D_{i} \le 0.15 \text{ for } i \in [1, 9]$$

$$\left(1 - \sum_{i=1}^{9} D_{i}\right) - 0.05 \ge 0$$
e constraint above effectively enforces $D_{10} \ge 0$.

* th .05 חחח

$$100 * \frac{PROD_{CO_2}}{FEED_{CO_2}} - CAPP_{SPEC} = 0$$

$$T_1 - T_0 \le 0$$

$$T_{i+1} - T_i \le 0 \text{ for } i \in [1,9]$$

$$T_{10} - T_{CL} - 0.1 \ge 0$$

Where:

i is a column stage on $i \in [1, 10]$ T_i is the temperature of a column stage i, T_0 is the feed flue gas temperature to the bottom of the column, D_i is the fraction of total contact liquid delivered to stage i, $PROD_{CO_2}$ is the flow of CO₂ product from the system, $FEED_{CO_2}$ is the flow of CO₂ in the inlet flue gas, and $CAPP_{SPEC}$ is the desired CO₂ capture percentage set by the user.

 \rightarrow Column gas exit temperature is pre-determined by VSE chemistry, specified capture level and feed gas composition

Process Model – FOQUS Implementation

VSE Model Form Derivation From First Principles

- Equations from Jensen, Mark, "Energy Process Enabled by Cryogenic Carbon Capture" (2015). Theses and Dissertations. 5711
- Raoult's Law, $x_{CO_2}P_{CO_2}^{sub} = y_{CO_2}P$, relates vapor (y_{CO_2}) CO2 to solid (x_{CO_2}) dry ice. The solid is pure and the sublimation pressure is temperature dependent, yielding $P_{CO_2}^{sub}(T) = Py_{CO_2}$. This is true for all EOS, and any gas-phase reaction.
- Using fugacities and adding a Poynting correction, we express this as $\phi_{CO_2}^{sub} f P_{CO_2}^{sub}(T) = \overline{\phi}_{CO_2}^{vap} P y_{CO_2}$ for the CO2 fugacity coefficients in each phase.
- De Guido & Pellegrini (2014) derived a more specific form for Peng-Robinson, a common EOS for flue gas mixtures: $\phi_{CO_2}^{sub} \exp\left(\frac{\Delta h_m}{RT_m}\left(1-\frac{T_m}{T}\right) + \frac{\Delta C_p}{R}\left(\frac{T_m}{T}-1-\ln\left(\frac{T_m}{T}\right)\right)\right) = y_{CO_2}\bar{\phi}_{CO_2}^{vap}$ where the heat of fusion (Δh_m), melting/desublimation temperature (T_m) and heat capacity change due to melting/sublimation (ΔC_p) depend on the non-CO2 component ratios.
- At equilibrium, the solid and vapor fugacities are equal. Therefore, quantifying these three unknowns for $\ln\left(\frac{y_{CO_2}}{x_{CO_2}=1}\right) = \ln K_{eq} = \frac{\Delta h_m}{RT_m} \left(1 \frac{T_m}{T}\right) + \frac{\Delta C_p}{R} \left(\frac{T_m}{T} 1 \ln\left(\frac{T_m}{T}\right)\right)$ models solid-vapor equilibrium for a cryogenic CO2 system using the PR EOS.

Process Model - Baxter Cryogenic Carbon Capture Process (4/4)

Process Model - Full CCC ECL Flowsheet, Annotated

Salt Chemistry Model - Results

Salt Chemistry Model - Results

Process Model – Results

 $CCSI^2$

Multi-Stream Heat Exchanger – Fouling Uncertainty Analysis

Multi-Stream Heat Exchanger – Fouling Uncertainty Analysis

Multi-Stream Heat Exchanger – Outlet Temperature Improvement

Salt Chemistry Model MARS Analysis

Process Model Feed Gas MARS Analysis

MARS Rankings for Total Duty