Analysis of Carbon Capture Retrofits for Cement Plants

Cement & Lime Decarbonization Workshop

Eric Grol

Senior Energy Systems Analyst – U.S. Department of Energy/National Energy Technology Laboratory

Project Contributors

Sydney Hughes^{1,2}: Methodology, Software, Validation, Formal Analysis, Writing – Original Draft; Writing – Review & Editing, Visualization, Supervision; **Patricia Cvetic**^{1,2}: Methodology, Software, Validation, Formal Analysis, Writing – Original Draft, Writing – Review & Editing, Visualization; **Sally Homsy**^{1,2}: Formal Analysis, Supervision, Writing – Review & Editing; **Alexander Zoelle**⁻²: Writing – Review & Editing; **Mark Woods**^{1,2}: Methodology, Writing – Review & Editing, Supervision; **Charles White**^{1,2}: Software, Formal Analysis; **Sandeep Pidaparti**^{1,2}: Formal Analysis; **Norma Kuehn**^{1,2}: Formal Analysis; **Hannah Hoffman**^{1,2}: Writing – Review & Editing; **Katie Forrest**^{1,2}: Writing – Review & Editing; **Travis Shultz**²: Conceptualization, Writing – Review & Editing, Supervision; **Tim Fout**²*: Conceptualization, Methodology, Writing – Review & Editing, Supervision; **Robert James**²: Writing – Review & Editing; Writing – Review & Editing, Supervision; **Robert James**²: Writing – Review & Editing, Supervision, Validation, Writing – Review & Editing

*Corresponding contact: Eric.Grol@netl.doe.gov, 412-386-5463 ¹National Energy Technology Laboratory (NETL) support contractor ²NETL ³Portland Cement Association (PCA)

This report was reviewed by personnel at PCA. As a step beyond standard internal quality assurance and quality control procedures, the U.S. Department of Energy Office of Fossil Energy and Carbon Management/NETL is committed to rigorous peer review of key work product to meet the quality standards of the research community. The following individuals at PCA are acknowledged, along with several of their industry members, for their efforts in reviewing the development methods and results of this analysis:

- Richard Bohan, P.E., F.A.C.I., Senior Vice President, Sustainability
- Louis Baer, Esq., CPEA, Senior Director and Counsel, Government Affairs
- Sean O'Neill, Senior Vice President, Government Affairs
- Christine McCarthy, Director, Government Affairs

- Establish baseline cost of CO₂ capture estimates for program direction, and comparison of "advanced" decarbonization strategies
- Examine the impact of operating parameters such as auxiliary utility pricing (e.g. supplemental natural gas and power), air ingress rate, kiln exhaust gas cleanup, and others
- Identify opportunities for CO₂ capture cost reduction, and the tradeoffs associated with achieving those reductions

- For each design case, develop a process model of the CO₂ capture system, CO₂ drying and compression, and associated utility installations in Aspen Plus
- Evaluate system capital and operating costs using model outputs, vendor data and EPC guidance
- Estimate the Cost of CO₂ Capture, inclusive and exclusive of transport and storage costs, based on methodologies adapted from NETL's "Quality Guidelines for Energy System Studies" guidance

Case Matrix

Case Number	CM99-B	CM95-B	CM95-B1	СМ95-В2	CM95-B3	CM95-B4	CM95-B5	CM95-B6	СМ95-В7	CM95-B8		
Capture Rate*	99 Percent		95 Percent									
Kiln Type	Ρ	re-heater/	e-heater/Pre-calciner Wet Process Pre-heater/Pre-calciner							er		
Kiln Off-Gas** CO2 mol %	31	31	25	30	17	13	31		25			
Kiln Fuel Type	Coal,	/Coke	NG	Oil	Coal/ Coke	NG	Coal/Coke		NG			
Heat Integration	N/A	N/A	N/A	N/A	N/A	N/A	10	30	10	30		

*The capture rate is indicative of the percentage of CO₂ captured from all emissions sources considered (i.e., the cement kiln, the NG boiler required to raise steam for solvent regeneration heating needs, and additional air in-leakage through raw mill processing, where applicable)

**The kiln off-gas CO₂ mol% is the assumed concentration directly from the kiln, before processing through raw mill operations (i.e., prior to any additional air in-leakage) and excluding comingled CO₂ from the NG boiler

Study Limitations

- For all cases, the base cement plant is not modeled (limited ability to identify heat integration opportunities)
- Kiln off-gas stream characteristics are based on average data points provided by PCA
- More detailed studies (e.g. Front End Engineering Design) would require individualized cost and performance estimates based on actual operating conditions
- CO₂ transport and storage costs can be highly variable
- Study utility is not in the absolute cost values themselves, but in comparison across cases

Economic Figure-of-Merit

Financial Methodology

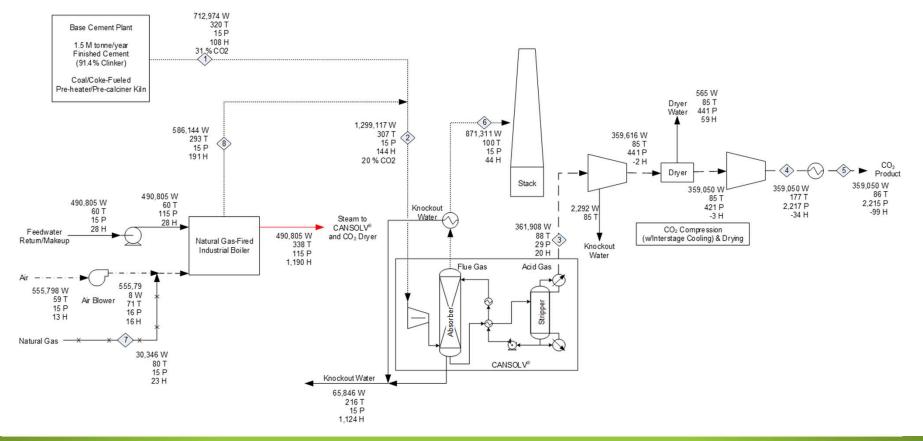
The cost of capture, excluding T&S, is • calculated using the equation below, where T&S costs would be an additive cost if included

 $\left(\frac{\$}{tonne\ CO_2}\right) = \frac{TOC * CCF + FOM + VOM + PF + PP}{tonnes\ CO_2\ captured\ per\ year}$

Where: •

- TOC Total overnight costs of all equipment added to support application of CO₂ capture
- CCF Capital charge factor
- FOM Annual fixed O&M costs
- VOM Annual variable O&M costs
- PF Purchased fuel
- PP Purchased power

Financial parameters specific to the cement industry were developed by NETL's Energy Markets Analysis Team reflecting 2022 market conditions


Financial Parameter	Cement Manufacturing [Real]
Capital Charge Factor (CCF = FCR * TASC/TOC)	8.84%
Fixed Charge Rate	7.91%
TASC/TOC Ratio	1.118
Debt/Equity Ratio	42/58
Payback Period	30-year operational period
Interest on Debt	8.82%
Levered Return on Equity	4.90%
WACC	6.56%
Capital Expenditure Period	3 year
	1 st year – 10%
Capital Distribution	2 nd year – 60%
	3 rd year – 30%

Note: FCR = Fixed charge rate; TASC = Total as-spent costs; WACC = Weighted average cost of capital

ENERGY

NATIONAL ENERGY

TECHNOLOGY LABORATORY

Study Assumptions

Case Matrix

- Captured CO₂ streams:
 - Cement kiln combustion flue gas and CO₂ produced via calcination
 - Natural gas-fired industrial boiler flue gas
 - Add-on boiler that generates steam for CO₂ capture unit and CO₂ dryer heat requirements
 - Dilution of CO₂ for solid fuel cases

Case Number	CM99-B	CM95-B ^A	CM95-B1 ^A	CM95-B2	CM95-B3 ^A	CM95-B4 ^A	CM95-B5	CM95-B6	CM95-B7	CM95-B8
Capture Rate ^B	99 Percent				9:	5 Percent				
Kiln Type	Pr	e-heater/I	Pre-calciner		Wet Pr	ocess	Pre-heater/Pre-calciner			
Kiln Exit Gas CO ₂ Concentration ^C , mol %	31	31	25	30	17	13	31 2		5	
Kiln Fuel Type	Coal/C	Coal/Coke		Oil	Coal/Coke	NG	Coal/Coke		NG	
Heat Integration			N/A				10	30	10	30
Combined Stream CO ₂ Concentration ^D , mol %	/ / /	21	19	21	15	12	22	23	19	20

^A Sensitivity cases regarding SO_x and NO_x concentrations are performed for these cases. SO_x at 100, 300, & 500 ppmv. NO_x at 500, 1000, and 1,500 ppmv

^B The capture rate is indicative of the percentage of CO₂ captured from all emissions sources considered (i.e., the cement kiln, the NG boiler required to raise steam for solvent regeneration heating needs, and additional air in-leakage through raw mill processing, where applicable)

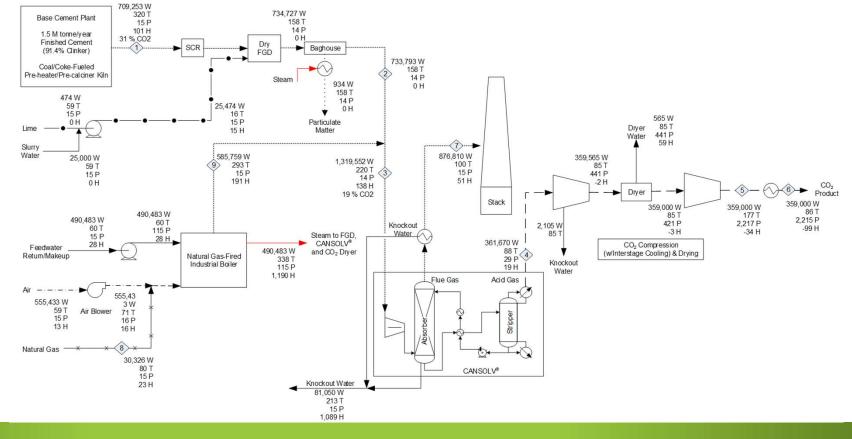
^c The kiln off-gas CO₂ mol% is the assumed concentration directly from the kiln, before processing through raw mill operations (i.e., prior to any additional air in-leakage) and excluding comingled CO₂ from the NG boiler

^D The combined stream CO₂ mol% is the assumed concentration of the comingled streams from the NG boiler and from the cement kiln before processing through raw mill operations (i.e., prior to any additional air in-leakage)

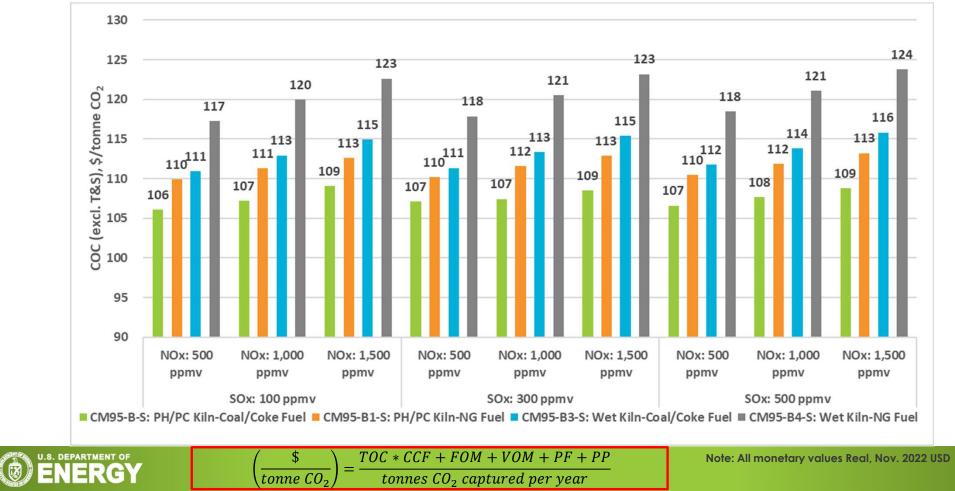
- TL NATIONAL ENERGY TECHNOLOGY LABORATORY

1) Cost_{NG}>Cost_{coal} 2) No free rides with heat integration!

Case Number	CM99-B	CM95-B	CM95-B1	CM95-B2	CM95-B3	CM95-B4	CM95-B5	CM95-B6	CM95-B7	CM95-B8	
PERFORMANCE											
Operating Basis	85%	85%	85%	85%	85%	85%	85%	85%	85%	85%	
CO ₂ Captured, tonnes/year	1,516,106	1,426,677	1,415,169	1,424,904	1,688,297	1,673,262	1,391,847	1,325,543	1,381,155	1,316,892	
CO ₂ Captured, tonnes/hr	173	163	162	163	193	191	159	151	158	150	
CO ₂ Compressor Load, kW	13,270	12,490	12,390	12,470	14,780	14,650	12,180	11,600	12,090	11,530	
Circulating Water Flow Rate, gpm	72,800	67,058	65,439	66,974	75,927	73,552	65,774	63,216	64,217	61,563	
Cooling Tower Duty (calculated), MMBtu/hr	728	671	654	670	759	736	658	632	642	616	
			COST								
Total Plant Cost (\$/1000)	573,135	544,376	557,714	545,922	656,587	687,283	583,992	554,481	599,812	572,780	
Bare Erected Cost	372,272	353,837	362,108	354,793	425,737	445,120	379,614	360,505	389,444	371,893	
Home Office Expenses	65,148	61,921	63,369	62,089	74,504	77,896	66,432	63,088	68,153	65,081	
Project Contingency	95,522	90,729	92,952	90,987	109,431	114,547	97,332	92,414	99,969	95,463	
Process Contingency	40,192	37,888	39,284	38,053	46,914	49,720	40,613	38,474	42,247	40,342	
Total Overnight Cost (\$MM)	694	659	676	661	796	833	707	671	726	694	
Total Overnight Cost (\$/1000)	694,192	659,341	675,757	661,257	795,743	833,149	707,054	671,212	726,493	693,706	
Owner's Costs	121,057	114,965	118,043	115,334	139,157	145,866	123,062	116,731	126,681	120,926	
Total As-Spent Cost (\$/1000)	776,123	737,159	755,513	739,301	889,660	931,480	790,503	750,431	812,237	775,580	
Capital Costs (\$/tonne CO ₂)	47.6	48.1	49.7	48.3	49.0	51.8	52.8	52.7	54.7	54.8	
Fixed Costs (\$/tonne CO ₂)	13.5	13.7	14.1	13.7	13.7	14.5	14.9	15.0	15.4	15.5	
Variable Costs (\$/tonne CO ₂)	9.4	9.3	10.4	9.5	11.0	12.1	9.6	9.1	10.8	10.6	
Purchased Power and Fuel (\$/tonne CO ₂)	28.4	27.7	27.2	27.7	26.3	25.8	25.9	22.2	25.4	21.8	
Cost of CO ₂ Capture (ex. T&S), \$/tonne CO ₂	98.9	98.8	101.4	99.2	100.1	104.2	103.3	98.9	106.4	102.7	
Cost of CO ₂ Capture (incl. T&S), \$/tonne CO ₂	108.9	108.8	111.4	109.2	110.1	114.2	113.3	108.9	116.4	112.7	


FGD + SCR Sensitivity Summary

- An analysis of the effects of capture stream contaminants (e.g., NO_x, SO_x) are included for coal/coke, gas-fired preheater/precalciner and wet fed cases (CM95-B, CM95-B1, CM95-B3, CM95-B4)
- The CO $_{\rm 2}$ emissions stream from the kiln was treated for removal of SO $_{\rm x}$ and NO $_{\rm x}$
- Kiln exhaust SOx/NOx levels varied between 100-500 ppmv/500-1,500 ppmv, respectively
 - A dry lime flue gas desulfurization (FGD) system was employed to scrub SO₂ from the kiln off-gas, such that the SO₂ content ≤ inlet maximum of 37 ppm_v
 - Along with the polishing scrubber in the capture system (~97 percent removal efficiency), SO_x emissions are essentially zero for all cases
 - SCR was evaluated upstream of the FGD unit for NO_x removal such that the NO_x content \leq inlet maximum of 2 ppm_v NO_x (assuming 5% NO₂ and the balance NO)



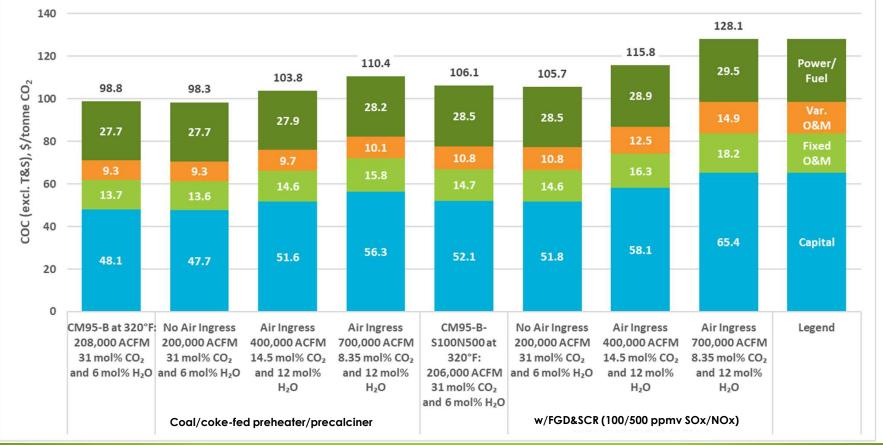
Coal/coke-fired, preheater/precalciner FGD + SCR Sensitivity Cases (Represented by CM95-B-\$300-N1000)

Coal/coke-fired, preheater/precalciner (CM95-B) FGD + SCR Sensitivity

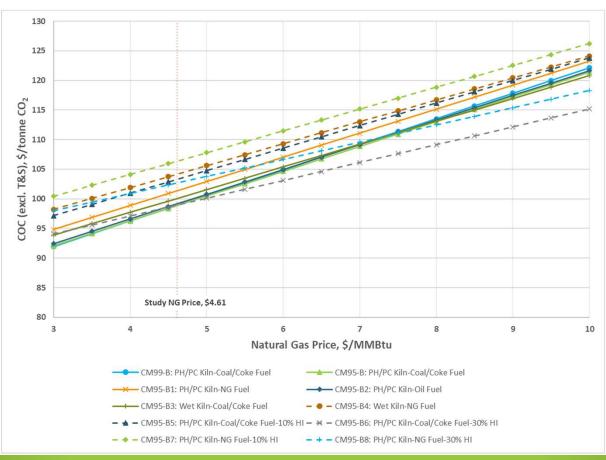
Air In-Leakage Scenario Analysis Summary

- Kiln off-gas often used for heating/drying the raw mill, and moisture content and volumetric flowrate increase, as air leaks into the stream when passing through raw mill units and water is absorbed from the raw mill
- Coal/coke-fed preheater/precalciner design cases (w/ & w/out SCR, FGD) varied to show effects of air ingress:
 - Kiln off-gas at 250°F with base case composition and flowrate (i.e. no extra air, moisture)
 - Kiln off-gas at 250°F with additional moisture, air (12 mol% H₂O, air added to achieve 400,000 ACFM)
 - 3. Kiln off-gas at 250°F with additional moisture, air (12 mol% H_2O , air added to achieve 700,000 ACFM)

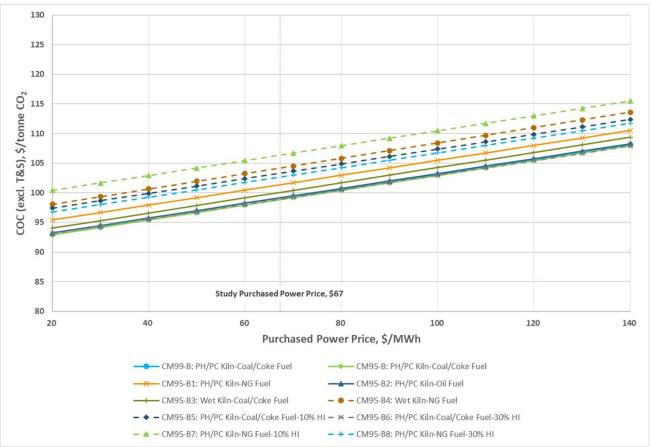
Case	Coal	/coke-fed	preheater/p	recalciner	w/FGD&SCR (100/500 ppmv SOx/NOx)					
		Entering C	apture Syste	em at 250°F	Base Case 320°F	Entering Capture System at 250°F				
Air In-leakage Scenario	Base Case 320°F		400,000 ACFM	700,000 ACFM			400,000 ACFM	700,000 ACFM		
Kiln Type				Pre-heater/l	Pre-calciner					
Fuel Type				Coal/	(Coke					
Treated Stream Temperature, °F	320		250		320	250				
Treated Stream I_2O Concentration, mol %		5.95	1		5.95 12					
Treated Stream CO2 Concentration, mol %		30.8	14.6	8.4	31.1		14.6	8.4		
Treated Stream Volumetric Flowrate, 1,000 ACFM	208	200	400	700	206	200	400	700		
Note: ACEM = actual cubic feet per minu										

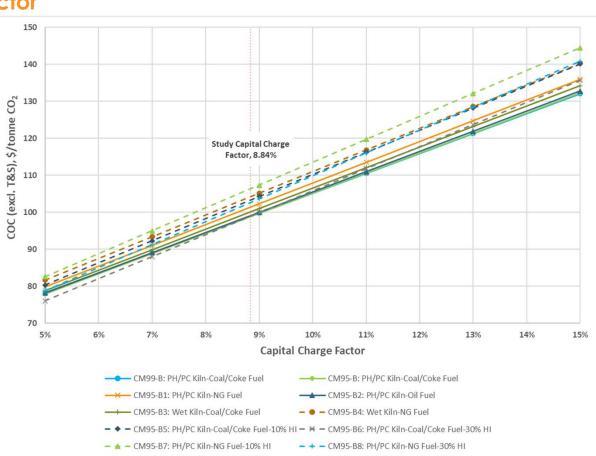


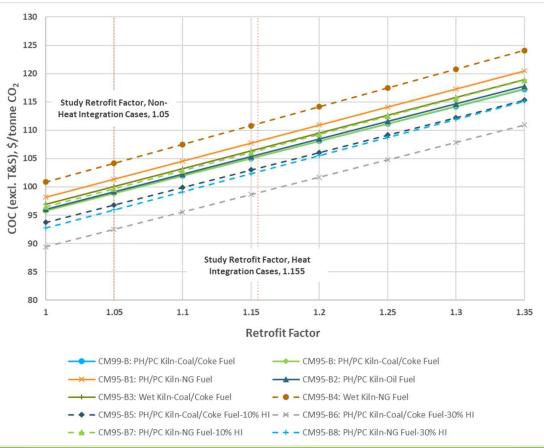
Note: ACFM = actual cubic feet per minute



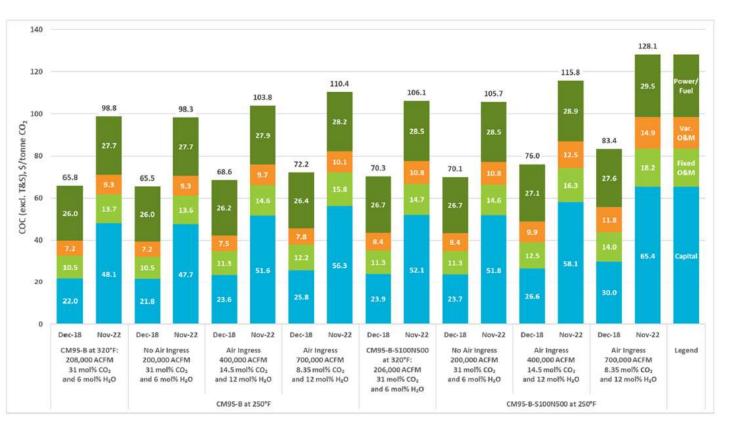
Air In-Leakage Scenario Analysis Results


Natural Gas Price


Purchased Power Price


Capital Charge Factor

Retrofit Difficulty Factor



Cost Comparison: 2018 vs 2022 US Dollars

- Increases in cost of money, escalation resulted in cost of capture increases ~50% (+)
- Increases in utility pricing (i.e. natural gas, auxiliary power) had minimal impact

Final Report

- Final report is available on NETL website
- Detailed cost tables, mass/energy balances
- All costs expressed in 2022 USD, but 2018 costs retained in appendix for comparison (price escalation, cost of money impacts, etc)

ANALYSIS OF CARBON CAPTURE RETROFITS FOR CEMENT PLANTS

SYDNEY HUGHES, PATRICIA CVETIC

March 31, 2023

DOE/NETL-2023/3856

Questions/ Comments

VISIT US AT: www.NETL.DOE.gov

@NationalEnergyTechnologyLaboratory

CONTACT: Eric Grol Eric.Grol@netl.doe.gov

Disclaimer

This project was funded by the Department of Energy, National Energy Technology Laboratory an agency of the United States Government, through a support contract. Neither the United States Government nor any agency thereof, nor any of its employees, nor the support contractor, nor any of their employees, makes any warranty, expressor implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

