

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY **Current DOE Efforts on Cement & Lime Decarbonization** July 19, 2023

An Innovative Process for the Direct Utilization of CO₂ in Solid Synthetic Pozzolan Production | IEDO

PI: Sada Sahu, Ph.D. – Solidia Technologies; Presenter: Pradeep Ghosh – Solidia Technologies DE-EE0009417 | 7/1/2021 – 3/31/2023

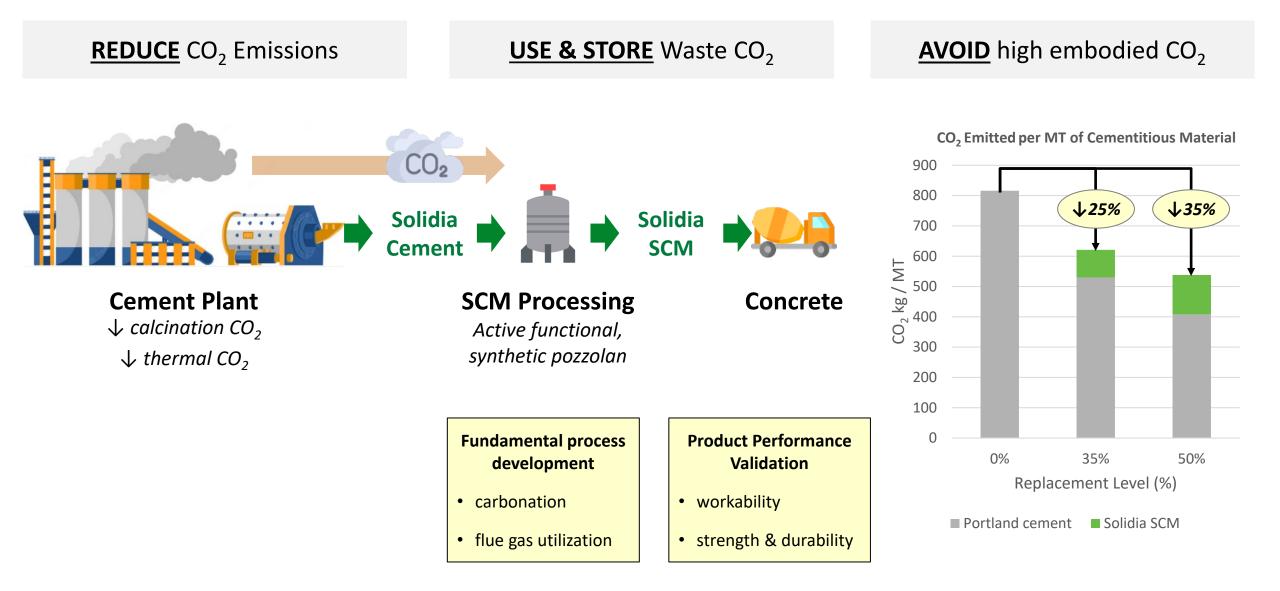
This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Outline

Innovation: An innovative process for direct utilization of CO₂ in solid synthetic pozzolan production

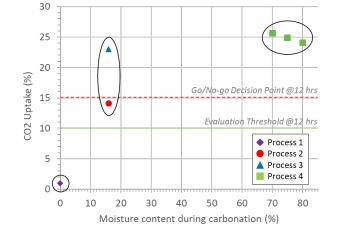
Project Lead: Solidia Technologies, Inc.

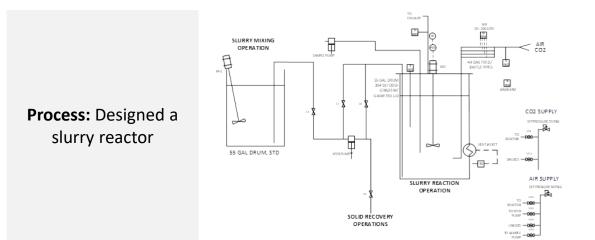
Timeline: July 1, 2021 - March 31, 2023 (100% complete)


Budget:

	Budget Period 1							Budget Period 2								
	FY21		FY				22				FY23			Total Planned Funding		
	Jul - Sep		Oct - Dec		Jan - Mar		Apr - Jun		Jul - Sep		Oct - Dec		Jan - Mar		i unung	
DOE Funded	\$ 249	,415	\$ 13	3,582	\$ 26	56,803	\$	215,777	\$	587,731	\$	345,459	\$	268,391	\$	2,100,000
Solidia Cost Share	\$ 63	,135	\$ 3	3,814	\$ 6	67,537	\$	54,620	\$	148,774	\$	87,447	\$	67,939	\$	532,626

End Project Goal:


- Develop a process for producing a solid synthetic pozzolan through direct capture, utilization, and storage of CO₂ from the flue gas stream of an operating cement plant through reaction with Solidia Cement[®], a nonhydraulic cement, without any disruption to the clinker production process
- 2. Use the carbonated Solidia Cement as a supplementary cementitious material (SCM) in concrete with comparable or superior performance to concrete with traditional SCMs such as fly ash and slag cement


Strategic Approach

Results and Achievements

Carbonation: Two methods meet CO₂ uptake and time thresholds

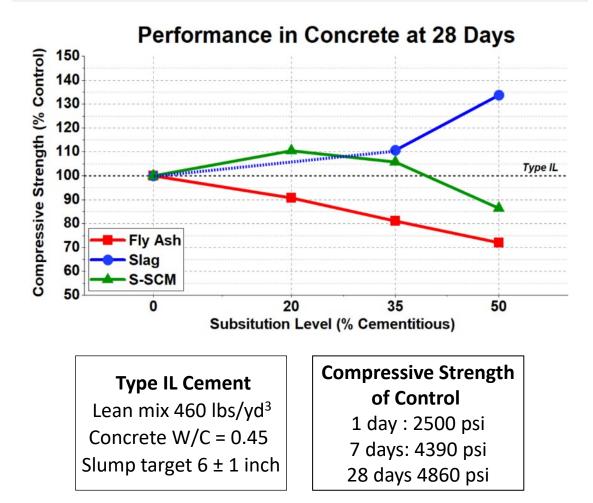
ity: The oduct has nic activity 100°_{OPC} Quartz Class F Class C Grade Solidia S

> *lower* $Ca(OH)_2$ *content* = higher consumption

7 Days

□28 Days

■56 Days


Production: Built the batch reactor

SCM Viability: The resulting product has high pozzolanic activity

Results and Achievements

Comparable performance to traditional SCMs

Confidence following suite of ASTM tests

• ASTM C1567: Alkali-Silica Reactivity (ASR)

• ASTM C1202: Chloride Permeability

• ASTM C1157 & C595: Sulfate Expansion

• completing all tests per ASTM C1709

Future Work, Technology Transfer, & Impact

Future Work:

• Commission large lab line at HQ to produce 1,000 MT per year of Solidia SCM to seed market (material qualification and trial pours with DOTs and ready-mix producers)

Technology Transfer:

- Build pilot line at a cement kiln for direct utilization of flue gas CO₂ to produce and deliver Solidia SCM into the market
- Extend technology application to waste streams to reduce CO₂ footprint and expand market access (remove supply chain constraints)

Impact:

- Grant provided access to critical resources (people, equipment, labs) necessary to conduct experiments, measure impact, and develop repeatable process and product
- Accelerated development to prove viability and instilled confidence in next phases of investment