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Wave Energy

• Use ocean waves to generate useful energy

• Use wave energy converters (WECs)

• A few different designs
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Variance Spectra

• Tell us about sea surface energy

• Energy ∝ variance

• Help estimate annual power production of WEC

• Fourier transform of sea surface

• Buoy measurements
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Describing Variance Spectra

• Use statistical information about spectra

* Significant wave height (𝐻𝑠)

* Peak period (𝑇𝑝)

* Energy period (𝑇𝑒)

• Use parametric model 

* Pierson-Moskowitz (PM)

* JONSWAP
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Grouping6



Loss of Information7
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Autoencoders

• Deep neural network with symmetric architecture

• Trained to encode and decode data
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Goal

• Use autoencoder to find better parameters than 𝐻𝑠 and 𝑇𝑝.

• Train and test with NDBC data from buoy 46050

* Off coast of Newport, OR

* Near PacWave testing station

* Data from 2007-2022
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Results

• With energy + 1 learned parameter, outperforming PM model

• Hyperparameter tuning
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Next Steps

• More hyperparameter tuning

• Using 2 and 3 learned parameters

• Try to give meaning to parameters?
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Ethan J. Sloan14

I have really enjoyed working with so many friendly and 
helpful people and having the opportunity to learn 
about scientific research in renewable energy 
technology. Working on this project has taught me a lot 
about computational methods in research and has 
given me a greater appreciation for it. I have also 
become comfortable in using useful and applicable 
mathematical methods that will be important in many 
kinds of research I may do in the future. 



Rafael Baez Ramirez15

I appreciate that all of the faculty and staff have been 
incredibly helpful, patient, and friendly to me. As the 
internship progressed, whenever there was any issues or I 
was unable to find the information required to continue 
working, there was always someone I could turn to for 
help. Whether that was my mentor or the other interns in 
the same office, everyone has helped me one way or 
another. My mentor was willing to help guide me and the 
other intern in learning the theory and methods to better 
understand the project. We spent the first few weeks 
catching up and understanding the concepts at work 
behind the project and my mentor was always offering to 
help if the other intern or I got stuck. The best part about 
the internship experience has been the friendliness of 
everyone I have gotten involved with. Everyone got along 
and were always willing to help others if they saw someone 
in need.
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Appendix A

Pre-Processing:

• 135051 spectra

*70% training, 30% testing 

• Spectra scaled such that ׬𝑓𝑖
𝑓𝑓 𝑆 𝑓 𝑑𝑓 = 1

• Data is shuffled before splitting
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Appendix B18

Hyperparameters:

• 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑆𝑜𝑓𝑡𝑚𝑎𝑥( Ԧ𝑥)𝑛 =
𝑥𝑛

𝑥𝑖׬

𝑥𝑓
𝑥 𝑡 𝑑𝑡

• 6 layers:
* 32 ⇒ 16 ⇒ 1 ⇒ 16 ⇒ 32 ⇒ 47

• Activation functions: leakyrelu ⇒ leakyrelu ⇒ sigmoid  
⇒ leakyrelu ⇒ leakyrelu ⇒ modified softmax

• Batch size: 2048

• Learning rate: Decaying sine learning rate

*

• Epochs: 1000

• Loss function: 10*MAE + 1*MSE

• ADAM optimizer

• Pre-train using PM data
* Learning rate: 0.05
* Batch size: 1024
* Epochs: 1000



Appendix C

Parameter Comparisons:
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