

Chemicals Aging and Degradation Mechanism of SLA Printed Materials for Nuclear Energy Applications

> Xavier O. Nieves Garcia, xonievesgarcia@utep.edu Undergraduate Student, Electrical Engineering

UEP

Md Shahjahan Mahmud, PhD RA Dr. Yirong Lin, Professor, Aerospace & Mechanical Engineering

UTEP TEAM

Dr. Yirong Lin Professor, AME

- Carla Ann, UG RA ▶ Previous Expertise: Photopolymerization 3D printing, DLP, ink formulation for 3D printing
- Joshua Dantzler, PhD RA
 - Previous Expertise: Ceramic photopolymer resin formulation & printing,
 DIW printing of ceramics, lattice structure design

Md Sahid Hassan, PhD RA **Previous Expertise**: VP printing of polymers, PBF printing of composites, material testing & characterization

Overview

- Project Objectives
- Task Description
- Parameters
- Task Updates (Work done so far)
- Future Plans
- ≻ Q&A

My Background

As an Undergraduate student attending the University of Puerto Rico – Mayagüez Campus, I am deeply immersed in the field of Electrical Engineering. My expertise and prior experiences revolve around unmanned systems, autonomous robotic operation, FDM printing, and control systems. During my academic journey, I have collaborated actively in a project centered on chemical aging and characterization tests with polymer materials. This opportunity has further expanded my knowledge and understanding of materials science and engineering applications. I am passionate about exploring innovative solutions to real-world challenges and look forward to contributing my skills and knowledge to the advancement of cutting-edge technologies in my chosen field.

Objectives:

- Printing & testing samples using commercial photopolymer resin
- Investigating effect of print orientation on material properties
- Aging of specimens in chemical environments
- Characterization of material properties before & after aging (Stress, strength, swelling, leaching, FTIR)
- > Study and analysis of aging mechanism & acceleration

Materials:

- Resin: Formlabs V4 clear resin
- Chemicals/Solvents:
 - 6M HCl
 - 6M HNO3
 - 10% Acetone
 - Xylene
 - Dodecane
- Printer: Formlabs Form3 SLA Printer
- > Washing device: FormWash
- Curing device: FormCure

Clear resin ingredients:

Urethane Dimethacrylate(UDMA): 55-75% Methacrylate: 15-25% Photoinitiator: <0.9

Formlabs Form3 SLA Printer

V4 Clear resin

FormWash

FormCure

Task Description

Part-1: Printing samples with different print orientations	 Printing test samples at different orientations, such as: Tensile sample printing at X, Y & Z orientations Compression sample printing at 0, 45 & 90° angles Harness Test sample printing at 0, 45 & 90° angles Material property analysis for each orientation
Part-2: Printing test samples & Chemical aging	 Printing test samples Aging of samples in chemical environments At different exposure time At different temperature
Part-3: Material Characterization	Performing mechanical, chemical & characterization tests (Swelling, Leaching, Tensile, Compression, SEM, FTIR)
Part-4: Data Analysis & Final Report	 Analysis of aging mechanism & acceleration from the experimental data Final report preparation

Instron machine

Thermo FTIR Nicolet IS5

Parameters:

Printing Parameters: [1, 2, 3]

Parameters	Quantity	
Printer Laser spot size	85um	
Laser wavelength	405nm	
Layer Height	100um	

Post Processing parameters: [2,3]

Process	Quantity		
Washing time	15 min		
Curing time	60 min		
Curing temperature	60∘C		

Reference:

[1] https://formlabs.com/3d-printers/form-3/tech-specs/

- [2] formlabs-materials-library
- [3] https://support.formlabs.com/

Aging parameters:

Duration of Chemical exposure (weeks)	1	3	6	9	12
Aging Temp.	Room Temperature				
Chemicals	6M HCl, 6M HNO3, 10% Acetone, Xylene & Dodecane				

Chemical exposure

Task: Part 1 (Print Orientations)

Tensile Test: ASTM D638

Print orientation	Elongation (%)	Ultimate Stress (MPa)	Young's Modulus (GPa)
Formlabs data [2]	6.0	65.0	2.80
Х	5.5	69.8	2.74
Y	7.0	67.1	1.96
Z	6.5	82.4	2.81

Z V X

Reference:

[2] formlabs-materials-library

Test machine	Instron (50KN)
Disp. rate	1mm/min

Task: Part 1 (Print Orientations)

Compression Test: ASTM D695- 2015

Print Orientation	Yield stress, MPa	Max Compressive strength, MPa	Young's Modulus, GPa
0°	111.0	263.0	2.05
45 °	101.2	313.5	1.75
90 °	97.5	315.3	1.60

Test machine	Instron (50KN)
Disp. rate	1mm/min

Sample Dimension (ΦxH): 12x12 mm

Task: Part 2 (Chemical Aging Schedule)

Test	Solutions/Solvents	W1	W3	W6	W9	W12
	HNO3					
	HCI					
Swelling	Dodecane					
	Xylene					
	10% Acetone					
	HNO3					
	HCI					
Compression	Dodecane					
	Xylene					
	10% Acetone					
	HNO3					
Tensile	HCI					
	Dodecane					
	Xylene					
	10% Acetone					

Leaching Test: Mass Spectrometry

Formlab V4 Clear Resin

Leaching Test: Mass Spectroscopy

Leaching Test: Mass Spectroscopy

Leaching Test Summary:

Experiment	Exposure time (days)	Detection	Conclusion
Xylene	41	(UDMA+Na ⁺)	Leached out
10 % Acetone in Water	30	(UDMA+Na ⁺)	Leached out
Dodecane	30	(UDMA+Na ⁺)	Leached out
HNO ₃ 6 M	30	Peaks are present in commercial acid as well.	Analysis ongoing
HCI 6M	41	Peaks are present in commercial acid as well.	Analysis ongoing

***** Tensile Aging Test:

Week 9 Tensile HNO3

Compression Aging Test:

Unaged vs week 9 for HNO3

HNO3 Aging Sample from W1 to W9

Compression Test Comparison before & after aging: Week-6

FTIR Spectra: After aging (Week-12)

Methyl Methacrylate (MMA)

Urethane di-methacrylate (**UDMA**)

Thermo FTIR Nicolet iS5

Future Work Plan

- Finish Room Temperature Tests
- Analyze Final Data and final report
- Begin Thermal Chemical Aging testing
- Research Post-Printing Improvement on Commercial Resin
 for Better Mechanical Properties

Thank You!

Chemicals Aging and Degradation Mechanism of SLA Printed Materials for Nuclear Energy Applications

Xavier O. Nieves Garcia, xonievesgarcia@utep.edu Undergraduate Student, Electrical Engineering

UEP

Md Shahjahan Mahmud, PhD RA Dr. Yirong Lin, Professor, Aerospace & Mechanical Engineering