

Investigating the Structural Basis for the Performance of Electrodialysis Membranes for Water Desalination

UG student, mechanical engineering

Ana Paulina Mata¹, Christian Dieter¹, Dr. José Leo Bañuelos¹

Objectives

Agenda

03

. . .

Background

Data/Results

How do ionic exchange

membranes work?

Approach

Conclusion

Acknowledgments

. . .

. . .

. . .

· • •

School: The University of Texas At El Paso

Major : BS in Mechanical Engineering

Minor : Electrical engineering and Mathematics

Time in UTEP : CHRES Program

Investigating the Structural Basis for the Performance of Electrodialysis Membranes for Water Desalination

21st-century ACE tutor

sharing knowledge in engineering while coaching the drone team and tutoring kids before and after school and during summer for 6-12 students in Title I schools.

Associations :

PI TAU SIGMA (International Honor Society for Mechanical Engineers)

President

WOAA (Women of Aeronautics and Astronautics)

Vice President

AIAA (American Institute of Aeronautics and Astronautics) <u>Member</u>

ASME (American Society of Mechanical Engineers) •••• Member

Sun City Rocket Team (Sub team: propulsion) Member

· • •

As a mechanical engineer, my career goals are centered around exploring the aerospace and automotive industries, where I can apply my expertise in problem-solving, design, and analysis to contribute to cutting-edge technologies and advancements in these sectors. I am particularly passionate about the environment, and I aspire to integrate sustainable practices and eco-friendly solutions into my work within these industries. My ultimate aim is to be part of projects that not only push the boundaries of engineering but also prioritize environmental consciousness, creating a positive impact on our planet's future.

. . .

. . .

- Investigating the impact of various electrolytes on structural properties of functionalized membranes using small-angle X-ray scattering experiments.
- Target energy efficiency
- Precise control over ion selectivity
- Explore innovative material extraction possibilities from desalinated water using functionalized membranes.

Outcomes:

- Drive advancements in membrane technology and industrial processes.
- Contribute to a more sustainable and resource-conscious future through cutting-edge research on membrane behavior and interactions.

. . .

Significance

Water scarcity

- Population Growth
- Depletion of Surface Water Sources

Vulnerable populations

- Limited Access to Safe Drinking Water
- Health Impacts
- Climate change displacements

Water quality

- Water Pollution
- Groundwater Contamination

Why should we care ?

01 Remove high mineral content

• Arid regions relies on subsurface aquifers

- ⁰² Clean waste water
- Potential to clean polluted water in several applications

03 Liquid separations

 Precious or rare earth element extractions Ex) lithium

Revolution of EDM technology

Electrodialysis has been gaining popularity over the years due to its unique capabilities and advantages in various applications. Some of the key areas where electrodialysis is experiencing growth in popularity include:

. . .

- 1. Desalination
- 2. Wastewater Treatment
- 3. Recovery of Valuable Compounds
- 4. Resource Recovery from Brine Solutions
- 5. Agriculture and Aquaculture

Limitations :

We do not understand the relation between performance of these membranes and structure.

Problem: doesn't allow us to advance the science.

If we understand structure then that means we can make better membrane designs.

How do lonic exchange membranes work?

. . .

Anion

(AEMs) are polymeric membranes that selectively transport negatively charged ions.

Ionic Exchange Membranes

Cation

(CEMs) are polymeric membranes that selectively transport positively charged ions. Their selective ion transport properties make them valuable tools in various fields, facilitating the advancement of cleaner and more resourceefficient solutions.

They are used in various electrochemical devices and processes like fuel cells, water electrolysis, and desalination.

(IEMs) are a type of selectively semi permeablemembrane that allows the passage of dissolved ions ina liquid while restricting/blocking other ions.Depending on the membranes electric charge , theyallow certain ions to pass while blocking the others.

· . .

METHOD: ELECTRO DIALYSIS METATHESIS (EDM)

Anode

Electrodialysis Metathesis (EDM) is a variation of reversal electrodialysis in which a metathesis (exchange) reaction occurs.

A conventional electrodialysis (ED) system is composed of repeating cells of two alternating cation- and anion-exchange membranes.

A feed solution compartment and a concentrate solution compartment are both present in every cell.

There's an electric potential between the cathode and anode that causes the charged ions to move toward the appropriate electrode .

In the EDM system, a substitution solution is introduced to give the exchangeable ions for the metathesis reaction, and four alternating ion-exchange membranes form a repeating quad of four compartments.

Xeuss 2.0

What is it :

. . .

Xeuss is a versatile system that measures material structure on a sub nanometer to micron scale. It is a modular platform supporting various applications with units for SAXS and WAXS.

SAXS

Small Angle X-Ray Scattering

It enables the determination of nanoparticle size distributions, and shape of macromolecules, pore sizes, and characteristic distances in partially ordered materials. This is achieved by analyzing the scattering behavior of X-rays as they pass through the material, recording the scattering at small angles. provides valuable insights into the nanoscale properties and structures of various materials.

How can we apply x-Ray scattering to our membranes?

We can study: Structural characteristics of functionalization and Interactions w/ electrolytes

Provides valuable information on :

- o Polymer chains
- o Intermolecular distances
- o Membranes microstructure

. . .

FOR ENERGY & THE ENVIRONMENT LABORATORY

scale = 1.0 (fixed) background = 0.001 (fixed) cm⁻¹ powertsmata = (fixed) A_scale = 1.1446e-06 \pm 1.1404e-07 A_power = 3.7746 \pm 0.021842 B_scale = 0.0077369 \pm 1.4513e+06 B_volfraction_a = 0.30219 \pm 9.9989e+07 B_sld_a = 0.3 (fixed) 10⁻⁶/Å² B_sld_b = 6.3 (fixed) 10⁻⁶/Å² B_d = 213.78 \pm 0.47463 Å B_xi = 100.72 \pm 1.0947 Å

Connecting SAXS to structural analysis

Collection of Polystyrene polymers

CONDITIONING PROCESS

Cation Membranes:

The membrane is soaked in 1M HCl and soaked for 24 hrs. followed by washing w/deionized water to remove the H+ contained on the surface, & then immersing the membrane in 1M NaCl for 24hrs.

Anion membranes:

The membrane is soaked in 1M NaCl and soaked for 24 hrs. followed by washing w/deionized water to remove the CIcontained on the surface, & then immersing the membrane in 0.5M Na2SO4 for 48hrs.

Three

About the Conditioning

1.Ion Selectivity: Conditioning with specific electrolytes can enhance the membrane's selectivity towards certain ions.

2.Membrane Stability: Conditioning can improve the membrane's stability and resistance to fouling.

3.Ion Mobility: Conditioning can affect the mobility of ions within the membrane.

For this project :

For example, we conditioned for the ion exchange. So we did acid conditioning and salt for CEM. It converts the functional groups to an acidic form (sulfonic acid group) and the NaCl converts that sulfonic acid to having H+.

. . .

SETTING UP SAMPLES ON THE EMPTY HOLDER

SCANS :

1. UNCONDITIONED

Dry samples SAXS

2. CONDITIONED

Wet samples SAXS

3. DRY POST EXPOSURE

In oven at 50 C for 24hrs. SAXS

. . .

. . .

. . .

dry vs. wet

SAS view fitted

FF CEM -10

dry vs. wet

CEM 10:DRY **CEM10-1: WET CEM10-2: WET** scale 1 scale 1 scale 1 background 0.001 background 0.001 background 0.001 A scale 5.28E-07 A scale 1.09E-05 A scale 0.00023371 B_scale 0.0037864 B scale 0.0043382 B scale 0.0085282 B_d 207.41 B_d 183.36 184.98 B_d B_xi 96.656 B xi 115.56 B xi 124.96

SAS view fitted

SAS view fitted

NEOSEPTA CMX -76

dry vs. wet

CMX76:DRY		CMX	L: WET	CMX2 : WET	
scale	1	scale	1	scale	1
background	0.001	background	0.001	background	0.001
A_scale	0.0016006	A_scale	0.00020837	A_scale	-0.0002191
B_scale	-0.17638	B_scale	0.99993	B_scale	3.1821
B_d	1.05E+06	B_d	200	B_d	1.71E+03
B_xi	22.833	B_xi	80	B_xi	257.56

SAS view fitted

Q(A⁻¹)

Acknowledgments

Mentor:

Christian L. Dieter, Undergraduate Assistant, University of Texas at El Paso

Faculty Advisor :

Dr. José Leo Banuelos , Assistant Professor, University of Texas at El Paso

External Researchers :

Eva Deemer , Ph.D. , Postdoctoral Research –Center for Inlands Desalination Systems

Tayia Oddonetto , Ph.D. Student , University of Texas at El Paso

Thanks!

Do you have any questions?

apmata@miners.utep.edu

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik and illustrations by Stories

FUJIFILM MEMBRANES

	TYPE 2		TYPE 10		TYPE 12		
Homogeneous	AEM	CEM	AEM	CEM	AEM	CEM	
	Anion permselective	Cation permselective	Anion permselective	Cation permselective	Anion permselective	Cation permselective	
Reinforcement	polyolefin		polyolefin		polyolefin		
Thickness dry (μm)	160	160	125	135	110	110	
Electrical Resistance (1)	5.0	8.0	1.7	2.0	6.0	6.0	
Perm selectivity (2)	95	96	95	99	95	99	
IE Capacity (3)	0.9	1.1	1.8	1.5	1.1	1.0	
Water permeation (4)	3.0	3.5	6.5	6.5	2.0	2.5	
Burst strength (5)	5.0	4.7	2.8	2.8	3.8	3.8	
pH stability	pH 2-10	рН 2-10 рН 4-12		pH 1-13		pH 1-13	
Temp stability (6)	40		60		60		
Typical applications	purifying process water concentrating waste water brackish to potable water		purifying process water concentrating waste water sea & brackish to potable water food desalination		purifying process water concentrating waste water		