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Intro (Stacie)
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Intro (Jalyn-Rose) 
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Fabricating a Solid-Liquid, Environmentally 
Friendly Extraction Process for Rare Earth Elements 
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 Nanofibers currently have a wide range of applications because of their high 
surface area to weight ratio, porous volume, low density, and greater tensile 
strength when compared to regular fibers

We believe that incorporating biological-ligands with our electrospun nanofibers will allow for a 
more effective filtration method of REEs while also allowing the method to be environmentally 

friendly

Nanofibers 
can retain physical, chemical, and biological properties 
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PVA/PEI Solution Characterization 

Characterization 
Instruments

 Polymers we are using are branched 
polyethyleneimine (PEI) and polyvinyl 
alcohol (PVA) mixed in water

 Characterization included viscosity, 
surface tension, and conductivity
— Range of viscosity desired in our solutions is 

100-500 cP while our surface tension should 
be 35-50 mN/m

 After conclusive testing, we found the 
solutions suitable for spinning are 16, 
18, and 20 weight percent for the 
ratios 3:1, 2:1, and 1:1
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 Once the fibers are spun, they are thermally crosslinked
— Cross-linking occurs in the chain segments of polymer to form a stable three-dimensional network 

structure

Electrospinning Procedure
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Under the SEM, we immediately observed 
that all our samples had many beads
 Our 3:1 samples had the most visible fibers ranging from 180-500 nm 

— They have multiple beads in various sizes on them, but the fibers are clear
— Beaded fibers are usually not desirable, but they are still fibers and have binding capabilities with 

the peptides
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Crosslinking the Fibers

 At least 110°C, at least 10 hrs

20wt% 

18wt%

Crosslinking ensures 
the fibers won't 
dissolve in water or 
other solvents
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 LBT immobilization carried out using a thiol-maleimide conjugation reaction
— Short peptides created for REE selectivity and affinity; have 1 reusable binding site
— For maleimide functionalization of our fibers, we wash our samples with PBS at a pH 

of 7. Succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC) is then 
dissolved in DMSO and incubated with the fibers

— Sample is then washed three times with a coupling buffer to remove DMSO at pH 8
— Cys-LBT is incubated with TCEP beads then combined with maleimide functionalized 

fibers 

Lanthanide Binding Tag (LBT) Immobilization 

Amine Functionalized Fibers (R1) SMCC Maleimide Functionalized Fibers Cys-LBT LBT Immobilized Fibers
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 Batch adsorption is completed by preparing 
a Nd stock solution with a final 
concentration of 0.1 mM with a pH of 6.
— Batch adsorption is then initiated by combining 

the Nd solution with each LBT immobilized sample 

 For batch desorption, the Nd exposed 
samples are washed with a MES or HEPES 
buffer to get rid of any unadsorbed metal 
ions
— They are then treated with a 25 mM HCl solution 

 From the treated solution, the adsorbed 
metal ions will desorb and the solution ion 
concentration can be measured 

Adsorption and Desorption of Neodymium

1 REE Binding Site 
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 Arsenazo III photometric assay is used to determine the concentration of metal ions 
in unknown samples
— First, 120 µl of filtered 0.1 wt% Arsenazo in 6.25 wt% TCA is then combined to the solution
—  Second, 40 µl of 12.5 wt% trichloroacetic acid (TCA) is pipetted into well plates. 
— Third, 40 µl of solution is combined in the well. 

 Assay is completed after adsorption and desorption

 Absorbance at 654 nm is then measured and compared to the standard curve to 
determine REE concentration in our fiber samples.

Spectrophotometric Determination 
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Spectrophotometric Determination 
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Initial Neodymium Extraction 

 We placed 3 ml of 200 µM Neodymium in each sample 
— Samples were allowed to adsorb, and the remaining solution was measured for Nd concentration
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Adsorption Capacity = 3 mL* (stock – sample [mmol/L])/ sample mass [g]
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Current Neodymium Extraction

 We placed 3 ml of 100 µM Neodymium in each sample
— Samples were allowed to adsorb, and the remaining solution was 

measured for Nd concentration

Adsorption Capacity = 3µl * (stock µmol/L-sample µmol/ml) / 1000 / sample mass g
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Next steps

 Next steps
— Quantifying exact amounts of SMCC and LBT to use with fibers
— Looking at different fiber compositions
— Testing the reusability of the fibers

 Future work
— Upscaling the process
— Testing filter capabilities
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Adsorption of Nd vs. Mass

0

10

20

30

40

50

60

70

80

0.001 0.01 0.1

Ad
so

rp
tio

n 
(μ

m
ol

 N
d/

g 
fib

er
)

Mass (g))

Adsorption per Gram of Fiber Based on Mass of Fiber

MES, 18 wt% 3:1 Adsorption HEPES, 18 wt% 3:1 Adsorption

MES, 20 wt% 2:1 Adsorption MES, 20 wt% 2:1 NF Adsorption

Log. (MES, 18 wt% 3:1 Adsorption) Log. (HEPES, 18 wt% 3:1 Adsorption)

Log. (MES, 20 wt% 2:1 Adsorption) Log. (MES, 20 wt% 2:1 NF Adsorption)


	Electrospun PVA/PEI Nanofibers for Rare Earth Element Extraction
	Intro (Stacie)
	Intro (Jalyn-Rose) 
	Fabricating a Solid-Liquid, Environmentally �Friendly Extraction Process for Rare Earth Elements 
	Nanofibers �can retain physical, chemical, and biological properties 
	Slide Number 6
	Electrospinning Procedure
	Under the SEM, we immediately observed �that all our samples had many beads
	Crosslinking the Fibers
	Lanthanide Binding Tag (LBT) Immobilization 
	Adsorption and Desorption of Neodymium
	Spectrophotometric Determination 
	Spectrophotometric Determination 
	Initial Neodymium Extraction 
	Current Neodymium Extraction
	Next steps
	References  
	Acknowledgements 
	Slide Number 19
	Adsorption of Nd vs. Mass

