

THE UNIVERSITY OF TEXAS AT EL PASO

NANOMATERIALS, INTERFACES, AND CONFINEMENT FOR ENERGY & THE ENVIRONMENT LABORATORY

Water Effects on Clustering and Reverse Micelle Formation of CO₂ Capture Solvents

Ryn Samuel De Castro

Mechanical Engineering, The University of New Mexico

About Myself

- Born in the Philippines
- Settled in Albuquerque, NM
- Enrolled at The University of New Mexico to study Mechanical Engineering
- Like to play guitar, longboard, and play sports with friends

Why Capture CO₂?

- Carbon Dioxide traps heat that bounces off the Earth's surface₁.
 - Rise in global temperature
 - Rise in sea levels
 - Change in weather patterns
 - Droughts
 - Acidification of Oceans
 - Death of marine life
- Why is there CO₂ in the first place?

Business Insider

Motivation and Applications

- Need better molecular understanding to improve
 - Point Source Capture
 - Captures CO₂ from a power plant's flue gas stream to prevent its release into the atmosphere
 - Direct Air Capture
 - Captures CO₂ directly from the atmosphere and is then stored or used for other purposes

Science Direct

Carbon-Capturing Water Lean Solvents (WLS)

- What does "water lean" mean?
 - Why use them?
- Properties
 - Nonpolar
 - Hydrophobic
- Benefits₂
 - High capture efficiency
 - Lower regeneration energy
 - Minimized use of water
 - Overall lower cost

WLS Continued

- 2-EEMPA
- 2-Aminopyridine
- 3-Aminopyridine
- 4-Aminopyridine
- Other Properties
 - High viscosity increase with CO₂
 - Increase in polarity with CO₂
 - Reversible with the removal of CO₂
 - Reusable

2-methoxy-N-(pyridin-2-ylmethyl)ethan-1-amine

2-methoxy-N-(pyridin-3-ylmethyl)ethan-1-amine

2-methoxy-N-(pyridin-4-ylmethyl)ethan-1-amine

Ways to Study Structure

- Small Angle X-Ray Scattering₃
 - Provides information about larger structures in a sample
- Wide Angle X-Ray Scattering
 - Provides more precise information to the spacing between atoms

$$Q = k_f - k_i$$
$$Q = \frac{4\pi \sin \theta}{\lambda}$$

 k_{i} k_{i

 $d \sim \frac{2\pi}{\Omega}$ $2\theta \sim \frac{\lambda}{d}$

My Study

- 2-EEMPA, 2-Aminopyridine, 3-Aminopyridine, and 4-Aminopyridine were introduced with H₂O and CO₂
 - Samples of "5%" mol H₂O without CO₂
 - Samples of "5%" mol H₂O with CO₂
 - Samples of 40% mol H₂O with CO₂
- Form small micelle-like clusters
 - Will later become reverse micelles once Pluronic F-127 is introduced

	EEMPA	N=2	N=3	N=4
Water Mass (g)	Insufficient	0.0205	0.01557	0.00583
	Data*			
Actual Water	~12-15**	15.9	12.5	5.12
mol %				

*actual water mass was not recorded, only calculated mass

**one droplet of water was dropped for EEMPA, N=2, and N=3 so the estimate is around the water mol % of N=2 and N=3 $\,$

Interpreting the Results

Intensity: higher=higher concentration, lower=lower concentration Q value: higher=smaller distance, lower=bigger distance Peak width: narrow=higher degree of order, broad=lower degree of order

Results and Analysis

Nearest Neighbor Distance Between Center of Mass of Each **EEMPA/Aminopyridine Molecule**

3-Aminopyridine

4-Aminopyridine

2-EEMPA Medium Range Order

25.00 20.13 20.00 15.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 9 12.39 12.68 12.39 12.68 12.39 12.68 12.58 12.

2-EEMPA MRO Distance

Intensity: higher=higher concentration, lower=lower concentration Half-width, Half-max: lower=higher degree of order, higher=lower degree of order

2-EEMPA MRO Intensity

2-Aminopyridine Medium Range Order

2-Aminopyridine MRO Intensity

2-Aminopyridine MRO Distance

2-Aminopyridine Half-width Half-max

Intensity: higher=higher concentration, lower=lower concentration Half-width, Half-max: lower=higher degree of order, higher=lower degree of order

*Samples without CO₂ have a relatively high fitting error

3-Aminopyridine Medium Range Order

3-Aminopyridine MRO Intensity

2-Aminopyridine Half-width Half-max

Intensity: higher=higher concentration, lower=lower concentration Half-width, Half-max: lower=higher degree of order, higher=lower degree of order

*Samples without CO₂ have a relatively high fitting error

4-Aminopyridine Medium Range Order

4-Aminopyridine MRO Intensity

4-Aminopyridine MRO Half-width Half-max

Intensity: higher=higher concentration, lower=lower concentration Half-width, Half-max: lower=higher degree of order, higher=lower degree of order

*Samples without CO₂ have a relatively high fitting error

Overview of Reverse Micelles

- What is a reverse micelle?
- How is it made?
 - Made new samples of CO_{2} infused 2-EEMPA and water
 - Mixed with Pluronic F-127
- In theory, all the $\rm CO_2$ and $\rm H_2O$ should go into the core

Pluronic F-127

- Amphiphilic Triblock copolymer
 - PEO blocks
 - PPO block
- Took a temperature dependent SAXS scan

15.0

12.5

10.0

7.5 -

5.0

2.5

0.0

0.01

0.02

Intensity (cm⁻¹)

Conclusion

Acknowledgements

- This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, & Biosciences (CSGB) Division
- Special Thanks to
 - Christian L. Dietert, The University of Texas El Paso
 - Daniel E. Moran, The University of Texas El Paso
 - Dr. Jose L. Banuelos, Department of Physics, The University of Texas El Paso

THE UNIVERSITY OF TEXAS AT EL PASO

NANOMATERIALS, INTERFACES, AND CONFINEMENT FOR ENERGY & THE ENVIRONMENT LABORATORY

Thank You!

Contact: ryndecastro22@unm.edu

References

- Climate.gov <u>https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide#:~:text=Carbon%20dioxide%20is%20Earth's%20most,including%20back%20toward%20Earth's%20surface.
 </u>
- 2. David J. Heldebrant, Yuan Jiang, Richard Zheng, Dushyant Barpaga, Charles Freeman, Phillip K. Koech, Deepika Malhotra, Greg Whyatt, and Andy Zwoster (2021). Performance and cost predictions of 2-EEMPA, and future opportunities for water-lean post-combustion capture solvents. *15th International Conference on Greenhouse Gas Control Technologies.*
- 3. Xenox.com https://www.xenocs.com/knowledge-base/saxs/#waxs

