DOE Projects: Cooled Blades and NExT September 2022 UTSR Update

Re	esearch	Staff
Michael Barringe	r	Assoc
Reid Berdanier		Assoc

Jeremiah Bunch Scott Fishbone Leland Tien Joel Wagner **Karen A. Thole** Assoc Res Prof Assoc Res Prof Eng. Technician Proj Mgr / Res Eng Res Engineer Res Scientist **Professor**

Glaudale Students			
Nicholas Gailey	Emma Veley		
Maria Rozman	Kyle McFerran		
Thomas Corbett	Connor Wiese		

Alexander Wildgoose

Kelsey McCormack

Chad Schaeffer

Graduata Studanta

Connor Wiese
Justin Wolff
Pete Wilkins
Ethan Bonn

This update provides a summary of recent START 2022 progress made towards supporting two important DOE-NETL funded programs

START: Facility and Instrumentation

Measurement Improvements: Durability and Stage Thermal Efficiency

NExT: Manufacturing; Pre-test Predictions and Test Plans

PSU-START integrates a broad suite of measurement techniques to evaluate aerothermal turbine performance

Penn State Proprietary

Advanced instrumentation techniques have also been integrated as standard measurement capabilities for START research programs

Using a nondimensional parameter, an optimal integration time can be chosen to reduce motion blur at a given speed

Penn State Proprietary

Radiation

Effects

Calibration

Image Capture

and Mapping

30

Calibration

To compare effectiveness results between blades, an objective method was used to establish a coordinate system for each blade for a single hole

Determine path of maximum effectiveness

Find location of maximum slope dφ/ds'

Use location of maximum slope as origin of (x', y') coordinates

The blade-to-blade variations in effectiveness are up to 15% at the nominal flow case, a wider variation than at the 65% flow case

Variations in normalized effectiveness were scaled to engine conditions to show the expected variations in temperature and life

The START Lab at Penn State is a continuous duration single stage test facility with three methods of measuring turbine work

The test turbine facility includes a 360° probe traverse for full-annulus calculations of aero efficiency

Traversed profiles at the turbine inlet with 360° traverse data at the turbine exit and torque measurements can be used to calculate integrated efficiency

Spatial variations of properties dictate that a full 360° is preferred for efficiency formulations based on both thermodynamic and torque measurements

Temperature differences of only 2°F at the turbine exit plane can result in stage efficiency of > 1pt

Whereas aero work measurements are dependent on sector size or location, the torquemeter and dynamometer work are not

These figures show the efficiency range as a function of sector size centered at BDC as it approaches the 360° values

 $\Delta \eta = \eta - \eta_{360^{\circ}}$

An average of nine tests would be required to obtain a precision uncertainty less than the bias uncertainty, which is 0.1 pts in efficiency

 $t = \frac{\overline{\eta} - \mu}{\sigma / \sqrt{n}}$ $\varepsilon_{p} = \overline{\eta} - \mu = t_{0.95} \frac{\sigma}{\sqrt{n}}$

 $\boldsymbol{\varepsilon}_{p}$: precision uncertainty $\boldsymbol{\mu}$: expected mean

σ : stand. dev.

n : sample size

The National Experimental Turbine (NExT) Project allowed START to develop a PSU-proprietary turbine that is "public" and designed through industry partners

Pre-test CFD predictions identified unsteady effects

Robert Kunz, Leland Tien 2022

The current status of the START rig is the turbine test section is in many pieces as we build up the new flowpath for NExT

The NExT hardware is currently being assembled and instrumented to prepare for the upcoming baseline test campaign

Manufacturing for blades and vanes shows dramatic reduction in time using AM

	Type of Manufacturing / Time to Manufacture (weeks)	Time To Manufacture	Expected Delivery
DoE Cooled Blades	Conventional Cast (core yield 25-75%)	3.5 years	Early 2023
NExT Vanes	AM Without Holes	10 months	October 2022
NExT Vanes	AM With EDM Holes	6 Months	June 2022
NExT Blades	AM With EDM Holes	10 months	October 2022
NExT Blades	Cast Using AM Printed Mold (No Tooling)	1 year	Mid 2023

Film-cooling holes and small features continue to be challenging to print at small scales, but AM technology has been advancing over time

In practice, trial prints of blades and vanes are still a requirement to assess build direction, processing parameters, feature choices, etc

An initial baselining program will characterize NExT design point performance in three specific ways benefitting next-generation turbine analysis goals

START upgrade is being developed to simulate combustor exit profiles

Traverse Ring

Rakes

P. T

Cold Effusion 40-250°F

Interchangeable **Effusion Liners**

In conclusion, we are ready to do the baselining for NExT and are excited to share this data with our community

A huge thanks to DOE-NETL and especially Rich Dennis for supporting these efforts.

