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• Direct-fired (Allam) cycle operates at 
very high pressures (300 bar) with CO2

dilution.

• CFD is expected to play a key role in 
combustor design (flame holding, heat 
release, CO formation, etc…).

• There is a lack of experimental data and 
modeling experience at these 
conditions.

Approach – Develop experimental 
capability at relevant conditions and 
validate computational tools.

Direct-Fired sCO2 Cycles

Motivation

3* Allam, et al., Energy Procedia 37, 2013, 1135-1149
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Borghi Diagram for Oxy-Combustion

• Three cases shown for 300 bar oxy-combustion define a range 

of conditions (O2 mass fraction from 7-25%) spanning the 

thickened, corrugated flame regime and stirred reactor.

• Significantly outside the range of gas 

turbine and IC engine operation.

• Requires assessment of appropriate 

turbulent combustion models.

Gas Turbines

IC Engines
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Example of Three TCI Models
LES Comparison of FDF, Flamelet and No Model

14% O2
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• Significant differences in 
predicted CO mean mass 
fraction at the combustor exit.

• Need to validate!

Journal of Energy Resources Technology JULY 2019, Vol. 141 / 070706-1

• LES, 16 Species 
skeletal mechanism 
from UCF

• ANSYS Fluent V18.2

Phi = 0.95

TF = 476 K

TO = 1014 K

P = 300 bar

2.4 MW



80 bar Max Combustor Pressure

Experimental Layout and CO2 Properties
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• 80 bar chosen as a compromise between cost and relevancy.

• Blow-down from standard k-bottles for CH4 and O2

• CO2 from liquid dewar with pump and heater (330K initially, 950K later).
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• Two flow rates (100 and 25 kW).

• Two oxidizer preheat temperatures (330K and 950K).

• Transpiration and backside water cooling.

80 Bar Optically Accessible Combustor

Experimental Layout and Operating Conditions
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Case 1 Case 2 Case 3 Case 4

O2 Mass Fraction in Oxidizer 0.3 0.3 0.3 0.3

Heat Input (kW) 100 100 25 25

Fuel Flow (g/s) 2.0 2.0 0.5 0.5

Oxidizer Flow (g/s) 26.68 26.68 6.67 6.67

Uox (m/s) 21.4 7.4 5.3 1.9

Reox 34,700 85,200 8,670 21,300

Ufuel (m/s) 11.4 11.4 2.8 2.8

Refuel 64,600 64,600 16,100 16,100

Tox (K) 950 330 950 330

Mom flux (ox/fuel) 2.82 0.98 2.82 0.98

CO2 cooling (g/s) 40.0 40.0 40.0 40.0

20 mm

110 mm

Fuel
Ox

CO2 Cooling



• 1.7M cells.

• No nozzle on most simulations.

• ANSYS Fluent 22.1.

• 16 species skeletal mechanism from UCF.

• RANS realizable k-e or LES with transported k.

• 2nd order.

3D LES and RANS with Skeletal Chemistry

Combustor Design and Modeling Setup
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• RANS predicts long flame, LES predicts shorter flame (faster mixing).

• No unburned CH4 but significant CO emissions.

Case 1: 100 kW, T=950K preheat

Results for Case 1 (baseline)
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LES (CE=94.4%, YCO=1.7%)RANS (CE=90.6%, YCO=1.47%)Temperature (K)

CO Mass Fraction

Log10 Heat Release (W/m3)



• Lower preheat temperature results in slower kinetics and 27% of CH4 exiting 
combustor unburned.

• Non-reacting simulations show slower mixing with lower preheat temperature due 
to lower ox-to-fuel momentum ratio.

Effect of Oxidizer Preheat Temperature
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Case 1 T=950K (CE=90.6%, YCO=1.47%)Case 2 T=330K (CE=64.5%, YCO=1.12%)Temperature (K)

CO Mass Fraction

Log10 Heat Release (W/m3)

RANS: 100 kW



• RANS predicts a significantly longer flame length and lower combustion efficiency 
compared to LES. Slower mixing.

• Large fraction of CH4 exiting combustor unburned (43.4% for RANS case).

Case 4: 25 kW, T=330K Preheat

Effect of Flowrate at Lower Preheat Temp
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LES (CE=60.5%, YCO=0.64%)RANS (CE=43.7%, YCO=0.63%)



• Operating pressure has small effect on heat release profile.

• Combustion efficiency increased from 41.1 to 43.7% as pressure increased.

Case 4: 25 kW, T=330K Preheat

Flowrates for 60 and 40 bar cases scaled by pressure

Effect of Combustor Pressure
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80 bar

40 bar

60 bar

Log10 Heat 

Release (W/m3)

CE=43.7%, YCO=0.63%, mch4=43.4%

CE=42.6%, YCO=0.63%, mch4=44.7%

CE=41.1%, YCO=0.61%, mch4=46.4%



• Swirl drastically reduces flame length with most of heat release occurring in first 30 mm of 
the combustor. Much higher combustion efficiency and lower CO as well.

• Greater similarity between RANS and LES for swirling cases.

Case 1: 100 kW, T=950K preheat

Swirling Oxidizer Flow (45°)
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Temperature (K)

CO Mass Fraction

Log10 Heat Release (W/m3)

LES (CE=98.4%, YCO=1.4%)RANS (CE=98.2%, YCO=0.26%)



• Drop in combustion efficiency with lower preheat temperature.

• Unburned CH4 was roughly 2.5%.

Case 3: 25 kW, T=950K Preheat

Swirling Oxidizer Flow (45°)
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LES (CE=94.8%, YCO=0.46%)RANS (CE=90.8%, YCO=0.44%)



• Swirl improves combustion efficiency over non-swirling case (~43%).

• Unburned CH4 was 27% for RANS and 32% for LES.

• Roughly 28% of fuel converted to CO. 

Case 4: 25 kW, T=330K Preheat

Swirling Oxidizer Flow (45°)

15

Temperature (K)

CO Mass Fraction

Log10 Heat Release (W/m3)

LES (CE=62.7%, YCO=0.54%)RANS (CE=63.3%, YCO=0.54%)



• Backside water cooling with copper wall provides effective 
heat management.

• Peak temperature of 460K well below max operating 
temperature of copper (530K).

3.175 mm Thick Copper Wall Backside Water Cooled

Nozzle Heat Transfer
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• Validation of CFD codes and sub-models is needed for high-pressure oxy-
combustion conditions.

• Wide range of flame shapes, combustion efficiency and CO production 
through variation of flowrate, oxidizer preheat temperature and oxidizer 
swirl.

• Represents a stepping stone to validation at 300 bar pressure (Allam cycle 
conditions).

• Facility scheduled to be operational by summer 2023.

Summary
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