

Exploring EBC temperature limits for IGTs

M. J. Ridley, M. J. Lance, T.G. Aguirre, K. A. Kane*, B. A. Pin

Corrosion Science & Technology Group Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge, TN 37831-6156

*now Johns Hopkins Applied Physics Laboratory

UTSR, September 2022, San Diego, CA

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Acknowledgments

- Funding from U.S. DOE, Office of Fossil Energy and Carbon Management, Advanced Turbine Program
 - Rich Dennis, Manager; Rin Burke, Project Monitor
- ORNL Team
 - G. Garner, B. Johnston, J. Wade oxidation experiments
 - T. Geer, V. Cox, C. O'Dell metallography
 - T. Lowe SEM
 - Y. Su TEM
 - E. Lara-Curzio, J. A. Haynes, R. Lowden, D. Mitchell input on CMCs
- Collaborations
 - Stony Brook Univ., Center for Thermal Spray Research (on-going)
 - S. Sampath and E. Garcia-Granados
 - NASA Glenn Research Center (just starting)
 - K. Lee and B. Harder
 - 1st industrial collaboration (just concluded)
 - 2nd industrial collaboration (initiated)

Enabling CMCs for combustion environments requires protective environmental barrier coatings (EBCs)

- CMCs (SiC fiber / SiC matrix) are alternatives to Ni-base superalloys for hot-section turbine components (static and rotating)
- Lightweight, high-temperature stability + strength
- SiC volatilizes in steam EBC required for mitigation
- Yb₂Si₂O₇ (YbDS) EBCs with Si bond coat are research standard

EBC failure modes need to be better understood for long term application

- Steam reaction: Si-based ceramics volatilize in steam
- Bond Coat Oxidation: Weakens interface, promotes delamination
- Thermal Stability: Phase/property changes during operation
- Thermal Expansion Mismatch
- CMAS: Infiltration of molten particulate ingested into engine
- Foreign Object Damage

CAK RIDGE

Tejero-Martin et al., J. Eur. Cer. Soc. (2021).

How do we develop a lifetime model for EBCs?

How do we develop a lifetime model for EBCs?

Capabilities: Focus on cyclic steam furnaces

Nuclear Severe Accident Test Station

1-h cycles: automated cyclic rigs Air + $90\%H_2O$, 10 min cool in lab. air

2005 cyclic rig: 1350°C maximum

2019 cyclic rig: 1450°C maximum*

Methodology + software developed to measure kinetics

Non-uniform TGO in multilayer EBC

Undulating interface
 APS Si microstructure defects

1350°C FCT in 90/10 H₂O/air

Open Source Software: https://github.com/TriplePointCat/SOFIA-CV

CAK RIDGE

EBC: median better, distribution not normal

Based on 1500-3000 automated thickness measurements:

Methodology for assessing EBC performance is based on bare SiC/Si oxidation in air and steam

Temperature (°C)

1000/T (1/K)

Kane, et al. J. Amer. Ceram. Soc. 105 (2022) 590

1500 1400 1300 1200 1100 1000 900 Silica in steam: EBCs to prevent evaporation – Si(OH)₄ 0.5 AND reduce scale growth rate wet 0.0 -1350°C 1350°C Deal and Grove Steam Steam Si, pH₂O~0.84 atm Silica -0.5 od[{⁴/2,mr]}[(u/₂mr])] -1.5-2.0 CVD SiC Opila Silicon SiC, pH₂O~0.9 atm 10 µm Calculated k_n dry 1350°C 1350°C Si, pO₂~0.2 atm Silica Silica Dry air Dry air Deal and Grove Present work Si, pO₂~0.2 atm -2.5 -Ogbuji and Opila **CVD SiC** Si Air Silicon SiC, pO₂~0.2 atm Si Steam Experiments performed in SiC reaction tube -3.0 SiC Air SiC Steam Based on Harder (NASA) -3.5 0.56 0.72 0.76 0.60 0.64 0.68 0.80 0.84

- Defines upper and lower CAK RIDGE bounds for EBC performance

Specimen geometry: Serial Sectioning does not impact on oxidation behavior up to 500h Optical Microscopy 1250°C, 500h

10

National Laboratory

- "Fresh" edge of sample exposed upon sectioning has no impact
- 3-5 measurements/µm of TGO over 7-9 mm total sample length
- Cost & sample efficient testing method

Specimen geometry: Long term impact?

BC destroyed at edge

BC 100% consumed

100 µm

Furnace ware contamination is a concern Example: Al contamination in 1425°C steam from tube/holder

1st gen. YbDS EBC after 100h, 1425°C, 100% steam

Mitigating high-temp furnace impurities – Protective coating for furnace ware?

Reaction tube impurities can be mitigated by coating tube with steam-resistant layer

Al₂O₃ Reaction Tube

14

YSZ-Coated Al₂O₃ Reaction Tube

Realistic steam reaction occurs $Y_2Si_2O_7 + H_2O = Y_2SiO_5 + Si(OH)_4$ (g)

How do we develop a lifetime model for EBCs?

How does YbDS compare to commercial mixed $(Yb/Y)_2Si_2O_7$?

Yb₂Si₂O₇ ↑ \$16.4/kg Yb₂O₃ ✓ Single Phase ✓ Low CTE ↓ Volatility ↓ CMAS Resist. Y₂Si₂O₇ ↓ \$3.4/kg Y₂O₃ ★ Multi phase ★ High CTE ↑ Volatility ↑ CMAS Resist. (Yb/Y)₂Si₂O₇
↓ Lower cost

Single Phase

"medium" CTE

↓ Volatility

↓ CMAS

Mixing YbDS to YDS can stabilize desired β-phase EBC

Is (Y/Yb)DS phase stable through furnace cycle testing (FCT)?

Does EBC composition or thickness influence TGO kinetics?

(Y/Yb)DS has lower rates than YbDS in both air and steam

- Only one temperature (1350°C)
- Manufactured at different locations using similar CVD SiC substrates
- Further study needed for mechanistic understanding
 - Porosity, monosilicate changes

CAK RIDGE

Raman can be used to map out phases of (Y/Yb)DS EBC after steam cycling at 1350°C

100 1-h FCT

As-sprayed

Amorphous Y/Yb Silicate β-(Y/Yb)DS (Y/Yb)MS a-cristobalite SiO₂ Silicon Concentration of secondary MS phase decreases and porosity increases – **not observed in air FCT**

300 1-h FCT

Silica TGO is crystalline after 100h exposure time

Can laser roughening impact EBC adhesion and reaction kinetics?

Si bond coat melts at ~1410°C \rightarrow Upper Temp Limit Can EBCs perform without Si interlayer? Roughened SiC interface to encourage adhesion

SEM BSE plan views

CAK RIDGE National Laboratory

R1 vs. R2 in 90% Steam: R2 performed poorly

TGO thickness is dependent on local interface roughness Crack network formation may accelerate oxidation

Enhanced roughness SiC leads to rapid oxidation

- (Y/Yb)DS EBCs consistently outperforms YbDS/YbMS in terms of oxidation resistance
- R1 SiC/EBC systems are more oxidation resistant than R2
- 1-h cyclic testing of SiC results in higher growth rates than isothermal testing
 - Cycle time matters!

21

No bond coat EBC systems display failure after short exposure times

TGO crack networks decrease interface strength Failed specimens have TGO thicker than the applied SiC roughness Delamination occurs at TGO – EBC interface

22

Understanding coating failure: largest stress may be from SiO₂ TGO phase transformation

Factors:

- Geometry Effects
- TGO Formation
- Material Properties

Needs:

- Better characterization of phase transformation
- Finite element modeling

SiO₂ Data From:

Swainson IP, Dove MT. Phys Chem Miner. (1995).

Peacor, D. Zeitschrift Fur Kristallographie - Z KRISTALLOGR. (1972).

How do we develop a lifetime model for EBCs?

FE stress modelling with respect to SiO₂ TGO thickness

Freeze Frame of 2D EBC EBC with TGO on SiC system on cooling EBC TGO SiC EBC TGO SiC In progress! SiO₂ undergoes rapid stress change during the phase transformation, likely inducing cracking Transition (MPa) 400 EBC $-SiO_2$ 200 Si SiO₂ - SiC at Stress 0 20 25 30

 SiO_2 undergoes ~5% vol. change and major CTE change at cristobalite transition (~200°C)

- Step 1: Measure thermal stress, cooling from 1300°C
- <u>Step 2</u>: Measure SiO₂ transformation stress at 200°C
- FEM with/without bond coat, roughened interfaces

Vational Laboratory

Raman Mapping: The $a \rightarrow \beta$ cristobalite phase transformation occurred at 240°C

- Each map took 30 minutes to acquire and was collected from the same location at each temperature.
- **Principal component analysis** of the Raman maps identified three unique components (phases); a, β cristobalite, and "cracks".
- The phase transformations starts at the cracks in the TGO and moves inward.
- Peak shifting can be correlated independently to Temperature and Stress

Stress in the Si substrate increased 300–500 MPa due to the $a{\rightarrow}\beta$ cristobalite phase transformation during heating

- The map at 200°C was used as the zero-stress reference
- Temperature shift of Si peak removed based on literature data
- **CAK RIDGE** Resulting peak shift correlated to stress at each pixel

Steam oxidation kinetics can be extrapolated to predict upper temperature limit for expected lifetime in IGTs

- Assuming: extrapolation + 30µm SiO₂ reaction product is adherent
- Used Deal & Grove Si oxidation temperature dependence (68 kJ/mol) with 1350°C wet air rates
- Rates for additional temperatures coming soon to improve model

EBC chemistry & microstructure modifications can greatly increase upper temperature limit for IGTs

- Assuming: extrapolation + 30µm SiO₂ reaction product is adherent
- Used Deal & Grove Si oxidation temperature dependence (68 kJ/mol) with 1350°C wet air rates
- Rates for additional temperatures coming soon to improve model

Slower (Y/Yb)DS rates: limited by Si melting

How do we develop a lifetime model for EBCs?

ORNL EBC outlook: plenty of work to keep everyone busy

• We need better EBCs

- Lower thermal conductivity
- Increased chemical stability
- Oxidant barrier
- FCT baselines for SiC and Silicon

CAK RIDGE

National Laboratory

31

- Understand/mitigate the SiO₂ phase transformation might help
 - Phase stabilization?
 - Need basic SiO₂ data
 - Modeling for stress induced EBC failure

- Calibrate Si stress measurements
- Compare SiO₂ grown in dry and wet air
- Quantify as function of thickness & oxidation temperature

50 µm

Thank you for your attention! EBC publications:

- K. A. Kane, E. Garcia-Granados, R. Uwanyuze, M. J. Lance, K. A. Unocic, S. Sampath, B. A. Pint, "Steam oxidation of atmospheric plasma sprayed ytterbium disilicate environmental barrier coatings with and without a silicon bond coat," Journal of the American Ceramic Society 104 (2021) 2285-2300.
- B. A. Pint, P. Stack and K. A. Kane, "Predicting EBC Temperature Limits for Industrial Gas Turbines" ASME Paper #GT2021-59408, for Turbo Expo 2021 Virtual Conference and Exhibition, June 11-15, 2021
 & Diesel and Gas Turbine Worldwide Jan.-Mar. issue (2022) p.40-43.
- K. A. Kane, E. Garcia, P. Stack, M. Lance, C. Parker, S. Sampath, B. A. Pint, "Evaluating steam oxidation kinetics of environmental barrier coatings," Journal of the American Ceramic Society, 105 (2022) 590-605.
- K. A. Kane, E. Garcia, M. Lance, C. Parker, S. Sampath, B. A. Pint, "Accelerated oxidation during long-term cycling of ytterbium silicate environmental barrier coatings at 1350°C," Journal of the American Ceramic Society, 105 (2022) 2754-2763.
- P. Stack, K. Kane, M. Sweet, C. Parker, M. Lance, M. Ridley, B. A. Pint, "Dry air cyclic oxidation of mixed Yb/Y disilicate environmental barrier coatings and bare silica formers," Journal of the European Ceramic Society 42 (2022) 3345-3350.
- M. J. Ridley, K. A. Kane, M. J. Lance, C. G. Parker, Y.-F. Su, S. Sampath, E. Garcia, M. Sweet, M. O'Connor, B. A. Pint, "Steam Oxidation and Microstructural Evolution of Rare Earth Silicate Environmental Barrier Coatings," Journal of the American Ceramic Society (2022).
 CAK RIDGE National Laboratory