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Enabling CMCs for combustion environments requires 
protective environmental barrier coatings (EBCs)

• CMCs (SiC fiber / SiC matrix) 
are alternatives to Ni-base 
superalloys for hot-section 
turbine components (static 
and rotating)

• Lightweight, high-temperature 
stability + strength

• SiC volatilizes in steam – EBC 
required for mitigation

• Yb2Si2O7 (YbDS) EBCs with Si 
bond coat are research 
standard

H. Wadley. IPM Research Group 
Website. Accessed 2018.
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EBC failure modes need to be better understood for long 
term application

• Steam reaction: Si-based ceramics 
volatilize in steam

• Bond Coat Oxidation: Weakens 
interface, promotes delamination

• Thermal Stability: Phase/property 
changes during operation

• Thermal Expansion Mismatch

• CMAS: Infiltration of molten particulate 
ingested into engine

• Foreign Object Damage Tejero-Martin et al., J. Eur. Cer. Soc. (2021).



55

How do we develop a lifetime model for EBCs?
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Capabilities: Focus on cyclic steam furnaces
1-h cycles: automated cyclic rigs

Air + 90%H2O, 10 min cool in lab. air

lid

furnace

2005 cyclic rig: 
1350°C maximum 

2019 cyclic rig:
1450°C maximum* 

1500°C
maximum 1700°C

maximum

Nuclear Severe Accident Test Station
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Methodology + software developed to measure kinetics

(Y/Yb)DS

Si

Non-uniform TGO in multilayer EBC
1. Undulating interface
2. APS Si microstructure defects

EBC: median better, distribution not normal

~900 µm span ~1800 µm 
span

1
0
0
h

3
0
0
h

5
0
0
h

1350°C FCT in 90/10 H2O/air

BSE

Based on 1500-
3000 automated 
thickness 
measurements:

Open Source Software: 
https://github.com/TriplePointCat/SOFIA-CV
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Methodology for assessing EBC performance is based 
on bare SiC/Si oxidation in air and steam

Kane, et al. J. Amer. Ceram. Soc. 105 (2022) 590

Experiments performed in SiC reaction tube

- Based on Harder (NASA)
- Defines upper and lower 

bounds for EBC performance

wet

dry

Silica in steam: EBCs to prevent evaporation – Si(OH)4

AND reduce scale growth rate
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Specimen geometry: Serial Sectioning does not impact 
on oxidation behavior up to 500h

- “Fresh” edge of sample 
exposed upon sectioning 
has no impact

- 3-5 measurements/µm of 
TGO over 7-9 mm total 
sample length

- Cost & sample efficient 
testing method

Optical Microscopy
1250°C, 500h
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Specimen geometry: Long term impact?

Optical Imaging

YbDS

Si
SiC

Circular & Rectangular Geometries
Bond coating lift-off observed after 
1250°, 1300°, and 1350°C FCT, extent 
dependent on Temp. and time

BC lift-off
Substrate attack

1350°C 500 1-h cycles

YbDS still 
protective

1350°C 1000 1-h cycles

YbDS

Si

BC destroyed at edge BC 100% consumed

SiC

YbDS separated 
at TGO interface

Direct exposure of Si + BC defects + cristobalite 
transformation + low KIc+ volatilization + ??? 

= break-away oxidation and EBC failure

H2O

H2O
Breakaway oxidation generally 
occurs above ~800 1-h cycles

Rapid increase in Ox. rate with YbDS EBC
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Furnace ware contamination is a concern
Example: Al contamination in 1425°C steam from tube/holder

1st gen. YbDS EBC after 100h, 1425°C, 100% steam

SEM/EDS maps

Al2O3 deposition on 
sample from reaction tube
Al2O3 + H2O = Al(OH)3 (g)

EBC

SiC
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Mitigating high-temp furnace impurities – Protective 
coating for furnace ware?

Al2O3 Reaction 

Tube

YSZ Layer

Protective ZrO2 barrier to slow 

down steam reaction with 

furnace ware

Stability 

in 

steam

Data from: Meschter, Opila, Jacobson, 

Ann. Rev. of Mat. Res. (2013)
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Reaction tube impurities can be mitigated by coating 
tube with steam-resistant layer

Al2O3 Reaction Tube YSZ-Coated Al2O3 Reaction Tube

Realistic steam reaction occurs
Y2Si2O7 + H2O = Y2SiO5 + Si(OH)4 (g)

Al2O3 deposition from furnace ware 
Al2O3 + H2O = Al(OH)3 (g)
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Yb2Si2O7

↑ $16.4/kg Yb2O3

✓ Single Phase

✓ Low CTE

↓ Volatility

↓ CMAS Resist. 

Y2Si2O7

↓ $3.4/kg Y2O3

 Multi phase

 High CTE

↑ Volatility

↑ CMAS Resist.

(Yb/Y)2Si2O7

↓ Lower cost
✓ Single Phase

✓ “medium” CTE

↑ Volatility

↑ CMAS 

+ =

How does YbDS compare to commercial mixed 

(Yb/Y)2Si2O7?

Mixing YbDS to YDS can stabilize 

desired β-phase EBC

Is (Y/Yb)DS phase stable through 

furnace cycle testing (FCT)?

Does EBC composition or 

thickness influence TGO kinetics?

Phase Stability Plot
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(Y/Yb)DS has lower rates than YbDS in both air and steam

• Only one temperature (1350°C)

• Manufactured at different locations using similar CVD SiC substrates

• Further study needed for mechanistic understanding
– Porosity, monosilicate changes

Ridley, MJ, et al. JACERS. (2022).
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Raman can be used to map out phases of (Y/Yb)DS EBC 
after steam cycling at 1350°C

Amorphous Y/Yb Silicate
β-(Y/Yb)DS
(Y/Yb)MS
α-cristobalite SiO2

Silicon

As-sprayed 100 1-h FCT 300 1-h FCT

Concentration of secondary MS 
phase decreases and porosity 
increases – not observed in air FCT

Silica TGO is crystalline after 100h 
exposure time
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Can laser roughening impact EBC adhesion and reaction 
kinetics?

500 µm

R1: 1st gen. roughened SiC

R2: 2nd gen. roughened SiC

Resin

Light microscopy

Resin

SiC

SiC

100 µm

100 µm

SEM BSE plan views

Si bond coat melts at ~1410°C → Upper Temp Limit
Can EBCs perform without Si interlayer?
Roughened SiC interface to encourage adhesion
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R1 vs. R2 in 90% Steam: R2 performed poorly

TGO thickness is dependent on local interface roughness

Crack network formation may accelerate oxidation

200 µm EBC on R2 SiC
1425°C, 100 1-h FCT, 90% H2O (g)

200 µm EBC on R1 SiC
1425°C, 100 1-h FCT, 90% H2O (g)

TGO

TGO

R1 SiC R2 SiC

TGO/SiC 

Boundary
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Enhanced roughness SiC leads to rapid oxidation

• (Y/Yb)DS EBCs consistently 

outperforms YbDS/YbMS in 

terms of oxidation resistance

• R1 SiC/EBC systems are more 

oxidation resistant than R2

• 1-h cyclic testing of SiC results 

in higher growth rates than 

isothermal testing

• Cycle time matters!
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No bond coat EBC systems display failure after short 
exposure times

TGO crack networks decrease interface strength

Failed specimens have TGO thicker than the 

applied SiC roughness

Delamination occurs at TGO – EBC interface

R1 SiC

EBC

TGO

R2 SiC

TGO

EBC

Epoxy

Epoxy
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Understanding coating failure: largest stress may be from 
SiO2 TGO phase transformation

Factors:
• Geometry Effects

• TGO Formation

• Material Properties

Needs:
• Better characterization of 

phase transformation

• Finite element modeling

SiO2 Data From:

Swainson IP, Dove MT. Phys Chem Miner. (1995).

Peacor, D. Zeitschrift Fur Kristallographie - Z KRISTALLOGR. (1972).
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How do we develop a lifetime model for EBCs?
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FE stress modelling with 
respect to SiO2 TGO 
thickness

Freeze Frame of 2D EBC 

system on cooling

SiC

EBC TGO

• SiO2 undergoes ~5% vol. 

change and major CTE 

change at cristobalite 

transition (~200°C)

• Step 1: Measure thermal 

stress, cooling from 1300°C

• Step 2: Measure SiO2

transformation stress at 

200°C

• FEM with/without bond 

coat, roughened interfaces

SiO2 undergoes rapid stress change 

during the phase transformation, 

likely inducing cracking

In progress!
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Raman Mapping: The α→β cristobalite phase transformation 
occurred at 240°C

• Each map took 30 minutes to acquire and was collected from the same location at 
each temperature. 

• Principal component analysis of the Raman maps identified three unique components 
(phases); α, β cristobalite, and “cracks”. 

• The phase transformations starts at the cracks in the TGO and moves inward.

• Peak shifting can be correlated independently to Temperature and Stress 
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Stress in the Si substrate increased 300–500 MPa due to the α→β
cristobalite phase transformation during heating 

• The map at 200°C was used as the zero-stress reference

• Temperature shift of Si peak removed based on literature data

• Resulting peak shift correlated to stress at each pixel
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Steam oxidation kinetics can be extrapolated to predict 
upper temperature limit for expected lifetime in IGTs

• Assuming: extrapolation + 
30µm SiO2 reaction product is 
adherent

• Used Deal & Grove Si oxidation 
temperature dependence   
(68 kJ/mol) with 1350°C wet air 
rates

• Rates for additional 
temperatures coming soon to 
improve model

Si/YbDS: limited to 1183°C
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EBC chemistry & microstructure modifications can 
greatly increase upper temperature limit for IGTs

• Assuming: extrapolation + 
30µm SiO2 reaction product is 
adherent

• Used Deal & Grove Si oxidation 
temperature dependence   
(68 kJ/mol) with 1350°C wet air 
rates

• Rates for additional 
temperatures coming soon to 
improve model

Slower (Y/Yb)DS rates: limited by Si melting
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How do we develop a lifetime model for EBCs?

Laboratory 
Testing

Material 
Changes

Lifetime 
Modelling of 

EBCs

FEM, Kinetics, 
Thermodynamics

EBC/Si/SiC

(chemistry, thickness, 
roughness, density) 

Experimental 
(Methodology, 

geometry, cycling)

Environmental

(T, P, v, atm)
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ORNL EBC outlook: plenty of work to keep everyone busy

• We need better EBCs
• Lower thermal 

conductivity
• Increased chemical 

stability
• Oxidant barrier
• FCT baselines for SiC 

and Silicon

• Understand/mitigate 
the SiO2 phase trans-
formation might help

• Phase stabilization?
• Need basic SiO2 data
• Modeling for stress 

induced EBC failure

• Use Raman for further 
understanding

• Calibrate Si stress 
measurements

• Compare SiO2 grown in 
dry and wet air

• Quantify as function of 
thickness & oxidation 
temperature
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Thank you for your attention!
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& Diesel and Gas Turbine Worldwide Jan.-Mar. issue (2022) p.40-43.
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