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Need for Turbine Cooling
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Bunker RS. Evolution of Turbine Cooling. ASME. Turbo Expo: Power for Land, Sea, and
Air, Volume 1: Aircraft Engine; Fans and Blowers; Marine; Honors and Awards
():VO01T51A001. doi:10.1115/GT2017-63205.

One key will be the marriage of design and
manufacturing to bring about the concurrent
use of engineered micro cooling or

cooling arrangement leads to a significant reduction of  transpiration, with the ability of additive
metal surface temperature, ~50 — 100°C, compared to manufacturing. If successful, this combination
conventional serpentine cooling designs

&

could see a further 50% reduction in coolant
usage for turbines.



Proposed Technologies

Advanced Additive
Manufacturing

Intricate Heat Transfer

ODS Enhancement Feature

Enhanced oxidation

resistance and high

temperature strength
Near Surface Embedded Cooling Channel (NSECC) Integrated Transpiration and Lattice Cooling Systems

. T

> AL, / NiO
> ODS Structural Layer
Substrate

(Superalloy)

nternal

ODS Layer Internal Cooling COOIing
Cooling Passage Passage
Hollow Lattice
ODS with AM Novel ODS Surface Coating Enhanced Heat Removal
> Both internal and external protection. > Ultra-High Temperature (1200 C) » NSECC: high internal heat transfer and

higher coolant flow near hot end wall.
» Lattice and transpiration combined

> Oxidation Resistance

: : » : Strength: thinner outer wall for
» Realized with additive manufacturing

better cooling

conjugate cooling: ~2x of state-of-the-art

» Oxidation Resistance . .
film cooling.

» Higher turbine inlet temperatures

<



Project Breakdown

Goal: Enhanced Oxidation Resistance and Thermal

Protection of Turbine Blades

ODS Powder Fabrication

and Characterization

* MCB/BM for powders fabrication
* Characterization

Cooling Geometry

Design
» Transpiration and Lattice
Geometry development

and optimization

Lab-Scale Heat Transfer

Characterization
» CFD modeling & steady state
and scaled TLC testing
» Mini/micro scale cellular units

Thermal Cyclic Testing

* In-situ non-destructive micro
indentation facility

» Thermal Cyclic Tests, Micro-
hardness

Process Optimization to
Fabricate ODS
Transpiration and Lattice

Structures
* DMLS, BJT printing parameters
* Posting printing characterization
* OM, SEM




Milestones

Milestone Title

Planned Date

A - Identify prototypes for integrated transpiration and internal cooling 6/30/2018
!3 - Identify qptlmal configurations for integrated transpiration and 9/30/2019
internal cooling
C- _I ntegrate new unit types into the optimization algorithm for ODS 12/30/2019
lattice structure
D - Identify the capability of AM equipment to print ODS Structure 9/30/2018
E - Develop successful approach to make ODS Structure for integrated
. . . 5/31/2022
transpiration and internal cooling
(Descoped)

F - Complete high temperature experiments for integrated cooling
structures made from ODS
G - Develop successful approach to produce ODS powder suitable for

.. . : 9/30/2019
additive manufacturing and lattice structures
H - Complete thermal cyclic loading tests 5/31/2021

©,
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AM Processes
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As metallic additive manufacturing technologies advance significantly over the recent past, complex
metal products, such as turbine components, can be manufactured by this innovative technology.
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Transpiration Cooling

PITT | S/WANSON

MECHANICAL & MATERIALS SCIENCE

» Concept: The coolant was forced through a porous wall or multiple micro-cooling channels
to form an insulating layer of coolant film between the outer wall surface and hot stream.

Transpiration Cooling

Transpiration

Porous
Media

Air

Air Blower

« Uniform coolant film coverage

Compressed

Air 5%

* Enhanced heat removal ability

Electric Heater

Bound T, — T pclU
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Flow
Straightener

; IR Camera

i+ ___—Infrared Glass

Flow
Regulator

due to higher inner-wall heat
transfer

» Challenges
* Oxidation due to Vortex Mixing with Hot Gas /
* Mechanical Strength Concern with Porous Media<

* Manufacturing Difficulties

MDD e
i_T 111 ] Test Plate
} oas]
Coolant DC Power
E Air @ Supply
Flowmeter E’ [-—=
Data Computer
Acquisition
High Anti-oxidation Resistance v
High Temperature Mechanical Strength </ ODS
Comparable Strength with Casting v
Complexity and Design Freedom v > AM
Fast and Low-cost Fabrication for v

Intricate Features
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1. SLA printed resin samples with low thermal conductivity

Surface Heater (HTC)

= Reduction of conductive heat loss

2. Micro-lithography fabrication for surface heater

» Direct deposition of silver coil onto the target surface
= No blockage/plugging of the outlets
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Pittsburgh True —Scale Geometries

» True scale geometries fabricated using DMLS additive manufacturing process
- varying diameter and build orientation X
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Integrated Cooling

Integrated Lattice-Transpiration

Architecture
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ODS 754 powders by Mechano-Chemical Bonding (MCB)

Cr (7.5~10 pm) Al (4.5~ 7 um) Y,0,; < 50nm W (~1 um) Ni (4 ~ 8 pum)
15 3 70.5

(7. BEE Z Mo

3 T a4
*Challenge unlform dispersion of nano-sized Y .03

SEM micrographs of MCB processed ODS 754 powder sample
(a). As-processed from MCB; (b) close view of (a)

TEM BF and HREM imaging

=25 nm

29 mg»



250W (MCB only) ODS 754, 1280 cycles-Weight gain

Cross section

Field of View

EDS of cross section shows a dense alumina stables at 1280 cycles.

Yttrium element can be detected in ODS samples and oxide layer, more Yttrium can be detected in chromium oxide than in
alumina, as indicated by red arrow.

Aluminum also can be found in chromium oxide layer, this can be explained by the formation of Y-AI-O
particles in chromium oxide layer, which can low oxidation rate of oxide layer. This is one reason of excellent stability of

ODS oxide layer. West\/lrgiIﬂaUniversity‘

@ BENJAMIN M. STATLER COLLEGE OF
ENGINEERING AND MINERAL RESOURCES
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~ 200W ODS 754 — after 2200 cycles

DDS Coating

Nano-sized y’phase

750nm

Nano-sized y'phase preserved at ODS costing after 2200 cycles

** Each cycle consists of moving test sample to the furnace within 15 minute and kept at ‘0(7 305 ; ;
1100 °C for 45 minutes and moved out within 15 minutes, kept for 45 minute at room CSCVIYgIIHaUDlVGI’SIBL

m perature. BENJAMIN M. STATLER COLLEGE OF
ENGINEERING AND MINERAL RESOURCE




Weight Gain Comparison (ODS 754)

Oxidation Weight Gain

—@— Pitt-WVU ODS —@— APM FeCrAl ODS Fe3Al
—@— Fe-35Ni-25Cr-4Al+Ti,C —@— Fe-35Ni-25Cr-4Al+Nb,C Fe-25Ni-15Cr-4Al
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Number of thermal cycles

Pitt-WVU ODS: Ni-20Cr-5AI-3W-1.5Y203(Thermal cyclic Test at 1100 degree C)
APM FeCrAl: Fe-20.42Cr-5.54Al-0.08 Mn-0.03Ti-0.23Si-0.03C( cyclic-oxidation tests,1100 degree C)

: Fe—28Al-2Cr—0.5Y203( cyclic-oxidation tests,1100 degree C)
Fe-35Ni-25Cr-4Al+Ti,C/Fe-35Ni-25Cr-4Al+Nb,C/ ( Mass change at 1100 degree C in air with 10% H20
vs. time (100 h cycles)

[1] Wright, 1.G., Pint, B.A. & Tortorelli, P.F. Oxidation of Metals (2001) 55: 333.

https://doi.org/10.1023/A:1010316428752 WestVKgirﬂaUniversit)L
rady, M.P., Muralidharan, G., Yamamoto, Y. et al. Oxid Met (2017) 87: 1. gc\JAMIN M. STATLER COLLEGE OF

https://doi.org/10.1007/s11085-016-9667-3 ENGINEERING AND MINERAL RESOURCES
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A7

METHOD OF UNIFORMLY COATING SELECTIVE STRENGTHING PHASE TO

GAS-ATOMIZED POWDERS FOR ADDITIVE MANUFACTURING
(research activity after 2021)

WestVirginiaUniversity.

BENJAMIN M. STATLER COLLEGE OF
ENGINEERING AND MINERAL RESOURCES



MCB-processed ODS IN 718 powders (with 0.5 wt.% Y203)W

Uniform distribute of yttrium element using MCB process (depending on processing

parameters). o o
WestVirginiaUniversity.

@ BENJAMIN M. STATLER COLLEGE OF
ENGINEERING AND MINERAL RESOURCE




MCB-processed ODS IN 718 powders (with 0.5 wt.% Y,0;), enlarged view of nano-
sized Yttrium distribution on each as-received IN 718 particle

s
el

WestVirginiaUniversity.
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TEM of DED-printed ODS IN718 (0.5 wt.% Y,0;) alloy by Synergy Additive

Standard Al,Y,0,:
(-252) d=0.1793nm
(511) d=0.1793nm
: 3.76 nm
4.12 nm
- 1 nmw Oo ! Dlslazr‘lce (nm) ’ ¢

Y,0, reacted with Al to form ALY,O,, thus reduced Ni;Al density and strength of ODS IN718

Data analysis method [ https://www.youtube.com/watch?v=kOQevYUzMLE]

- WestVirginiaUniversity.

" BENJAMIN M. STATLER COLLEGE OF
ENGINEERING AND MINERAL RESOURCES
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Milestone E

Milestone E: Develop Successful approach to make ODS Structure
for integrated transpiration and internal cooling

Volumetric Energy Density (VED)
DMLS of ODS IN718

2
using EOSM290 VED = e J/mm?
P = laser power

V = scan velocity
h = hatch spacing

(R s t = layer thickness
Power (W
Scan speed W t=0.04 mm h=0.11 mm
g (mm/s) 270 285 300 315 330 345
g 560 109.6 115.7 121.8 127.8 133.9 140.0
§ 640 95.9 101.2 106.5 111.9 117.2 122.5
720 85.2 90.0 94.7 99.4 104.2 108.9
800 76.7 81.0 85.2 89.5 93.8 98.0
880 69.7 77.5 81.4 85.2 89.1
960 63.9 71.0 74.6 78.1 81.7
1040 59.0 65.6 68.8 721 75.4
1120 54.8 60.9 63.9 67.0 70.0

Typical value to print as-received IN718 powder




First Stage: Calibration Coupons




Laser power (W)

Microhardness and Porosity Analysis (WVU) V

Laser scan speed (mm/s)
1040 1120

ighest hardness and low porosity
330 W and 560 mm/s (133.9 J/mm?3)

345

West\/u’giniaUnivefSitya

BENJAMIN M. STATLER COLLEGE OF
ENGINEERING AND MINERAL RESOURCES



Microstructure of Pitt’s EOS-printed ODS IN718 (0.5 wt% Y,0,)

Increasing scan speed favors smaller
melt pool (White arrows) in EOS
printed ODS IN718 owing to the
decrease of volumetric energy density
(VED)

| o
0.05 mm

P
VED = — 800 mm/s 960 mm/s
Vht

P:laser power (W)
V:scan speed (mm/s),
H: hatch spacing (mm)
t : layer thickness (mm)

R

1040 mm/s 1120 mm/s

o P=270 W

Jarget area

R

Block

—
0.05 mm

Scan speed effects on melt pool of EOS printed ODS IN718 at 270 W.
wV' WestVirginiaUniversity.

BENJAMIN M. STATLER COLLEGE OF
ENGINEERING AND MINERAL RESOURCES



Microstructure of IN718/0DS IN718 (0.5 wt% Y,0,)

The dark area shows y’ (Ni; (Al, Ti)) in ODS IN718

720 mm/s

Increasing scan speed favors lower 560 mm/s 640 mm/s
density of y’ owing to the decrease of
volumetric energy density (VED)

960 mm/s

800 mm/s 880 mm/s

VED = P
~ Vht

P:laser power (W)
V:scan speed (mm/s),
H: hatch spacing (mm)
t : layer thickness (mm)

11120 mm/s

% 040 mm/s P=270 W

Target area

Block

Scan speed effects on phase formation of EOS printed
ODS IN718 at 270 W.

WestVirginiaUniversity.

@ BENJAMIN M. STATLER COLLEGE OF
ENGINEERING AND MINERAL RESOURCES



Microstructure of Pitt’s EOS-printed ODS IN718 (0.5 wt% Y,0;)

Highest Hardness: 560 mm/s 640 mm/s 720 mm/s

330 W and 560 mm/s )

e ~
Increasing scan speed favors smaller
melt pool (White arrows) in EOS
printed ODS IN718 owing to the
decrease of volumetric energy density
(VED)

800 mm/s 880 mm/s

N\

VED = d
~ Vht

P:laser power (W) 0,05 mm

Viscan speed (mm/s), 1040 mm/s 1120 mmi/s
H: hatch spacing (mm) =

t : layer thickness (mm)
P=330 W

Harget area

ok 5 S

Block

Scan speed effects on melt pool of EOS prlnted ODS IN718 at 330 W.

West\/u’giniaUnivefSitya

BENJAMIN M. STATLER COLLEGE OF
ENGINEERING AND MINERAL RESOURCES



Highest Hardness:
330 W and 560 mm/s

VED = P
~ Vht

P:laser power (W)
V:scan speed (mm/s),
H: hatch spacing (mm)
t : layer thickness (mm)

Microstructure of IN718/0DS IN718 (0.5 wt% Y,0,)

P=330 W

Target area

: BB L E A Block
5 T R ANCRIE (R
Tt R }m DIELBINS 3 7

Scan speed effects on phase formation of EOS printed
ODS IN718 at 330 W.

wV' WestVirginiaUniversity.

BENJAMIN M. STATLER COLLEGE OF
ENGINEERING AND MINERAL RESOURCES



Parts using ODS IN718

Sample unit cells Sample integrated transpiration-lattice coupons

05mm 0.75mm 1mm
Ligament diameter

Baseline Transpiration (0.3 mm holes, 3d pitch)



Summary

O Transpiration cooling

The micro-lithography technique was employed to fabricate the surface heater on
transpiration cooling target surface

The adiabatic cooling effectiveness and HTC for the transpiration cooling structures were
investigated for the first time

Transpiration cooling with low blowing ratio (0.125) has higher adiabatic cooling
effectiveness than multi-row film cooling and HTC ratio close to 1

Although higher blowing ratio increases HTC significantly, the adiabatic cooling
effectiveness of transpiration cooling is still higher than film cooling

O Lattice cooling

Conjugate heat transfer study was performed for true-scale lattices, showing high heat
transfer

Both heat transfer and pressure drop depended on the ligament diameter, unit cell topology,
as well as the lattice orientation

O Integrated cooling
Two possible integrated design based on coolant flow direction being investigated

For a fixed total coolant flow, decreasing transpiration flow has low impact on the overall
cooling effectiveness, showing potential to mitigate blockage effects



Summary

U ODS development and DMLS

A novel ODS powder fabrication using MCB method (WVU Generation 3) has been
developed. This novel MCB method enables embedded ultrafine Y203 in spherical
metallic powders suitable of additive manufacturing turbine airfoils designs and
fabrication.

Optimized printing processing parameters for MCB-processed ODS IN718 powder
were obtained for EOS M290 AM machine. True-scale lattice and transpiration
coupons were successfully fabricated.

Preliminary TEM analyses showed clear evidence of uniform nano-sized yttrium
distribution of the AM-printed ODS IN718 alloy.



Thank you!
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* First stage: 48 cuboid samples using P and V pair from VED table
» Cross-section analysis for porosity and micro-hardness = optimal P and V
* Second stage: printing of full-scale test coupons

Cuboid coupons
(10mm x 10mm x 5 mm high) Full scale coupons

/ /

/ /
50 [ 5 g
0000
50 [ 5 g —
50 [ 5 g
50 [ 5 g
First-stage build to estimate optimal P and V Second-stage build using the down-

selected P and V value
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» Thermo-fluid investigation — film cooling

| 139333339
« Flat surface without coolant Go = ho(Tref = Tw), Trer =

protection: Tg Wan.- r

Mainstream: T,
- 12222222 S
Net heat flux reduction (NHFR) =1— + =1 — "t Taw=Tw) 2))) T

. —i’,z:%ggj;)/m §W T

« Film covered surface: q=hi(Trer = Tw)  Tref= Taw

h
« Unknowns: T,,, Ty, h—f

n= To = Taw . pgiabatic cooling effectiveness |
Tg =T Obtained Overall cooling effectiveness
»from polymer Ty — T,
I : Heat transfer coefficient ratio e coupons with P=7_ T,
ho low thermal 7
Conductivity 0.5 — 0.7 in real engine conditions
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IR Camera
fow DO ;
i u
Straightener ____—Infrared Glass M = Pclle
: ‘ PgVg
D)) BT
‘ Tunnel

—— ' \\
Air Blower Electric Heater 1 T Test Plate\
O m

Compressed Coolant DC Power
Air \{;2} \ Air Q Supply

Flow Flowmeter :
Regulator = 488
Data Computer
Acquisition

Adiabatic cooling effectiveness test:

Blowing Ratio: M =0.125, 0.25, 0.5

* Heat transfer coefficient test:

Blowing Ratio: M =0.125, 0.25, 0.5
Coolant Temperature: T, =35 °C Coolant Temperature: T, =21 °C
Mainstream Temperature: T, =35 °C Mainstream Temperature: T, =50 °C

Mainstream Velocity: v = 11m/s (Re,=98,000) Mainstream Velocity: v, = 11m/s (Re,=98,000)

a & 0 b PE

Heater power on for h,: 0.2W Heater power off for T,

o o A~ W N PE

No coolant injection to obtain h,
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—e—PF SD2 HD2 —©-PFSD2.5HD2.5 & BCO0-0.5
O BCO0-0.75 O BC45-0.75 B BC-max-close-0.75
A FCO0-0.5 A FCO0-0.75 A FC45-0.75
A FC-max-close-0.75 X Kagome0-0.5 X Kagome0-0.75
X Kagome45-0.75 Kagome-max-open-0.75 + OCTAO0-0.5
+ OCTAO0-0.75 + OCTA45-0.75 OCTA-max-close-0.75
20
1.8
x 1.6
O
5 14
<L
LL
L
o 12
2
s 10
x
Qos A
X
L
o 0.6
0.4
0.2
3000 5000 7000 9000 11000 13000
Re
(Fig)
— \Nug
Performance factor = N
fo
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Smaller hole size or smaller hole pitch present better performance

The impact of increasing blowing ratio from 0.25 to 0.5 is not as significant as the increase from 0.125 to 0.25
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Smaller pitch leads to higher HTC, due possibly to interactions between closely adjacent coolant discharge

HTC sensitive to blowing ratio and pitch-to-diameter ratio; but less sensitive to hole size



BC Unit Cell

FC Unit Cell

Lattices from Unit Cells

Kagome Unit Cell
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» Powder bed fusion process
using laser

» Well developed process
parameters for Inconel
superalloys

» Challenges regarding ODS
powder process development to

be mitigated by systematic
study

» Fabricated coupons (In718)

DMLS for ODS PITT | SWANSON

MECHANICAL & MATERIALS SCIENCE

Movable Laser
Build Mirror
Generator

Chamber
| él e —]

Leveling
Roller

Powder
Supply
Chamber

Powder
Recycling
Collector

 Laser Power: 400W EOS M290

« Laser Focal Diameter: 100um
« Scan Speed: upto 7m/s
« Printing Material: Inconel 718 (similar composition to ODS)




