Hydrogen Combustion Research at NETL Pete Strakey, NETL, September 2022

Hydrogen Combustion Capabilities at NETL

Low and High Pressure Rigs, Diagnostics and CFD Modeling

B-6 MGN Campus

SimVal Combustor

Bluff Body Burner

Diffusion Flame Burner

~ 200 SLPM, H2/CH4/CO

High pressure combustion and heat transfer
Preheated air up to 2 lb/sec @ 800°F
Combustor pressures up to 20 atm
Laser diagnostics / High speed imaging
Gas sampling
Natural Gas, LNG and Hydrogen
up to 2 MW thermal output

NH3/H2 flame in NETL PGH FCL

Flashback in Bench-Scale Low Swirl Burner

LES with H₂/CH₄ Fuel Blend

- Studying flashback in a Low Swirl Burner with hydrogen / methane fuel blends.
- Developing experimental data for model validation.
- Elucidating underlying physics.

80% H₂ / 20% CH₄
 2-step global mechanism

Contours of Static Temperature [K] (Time=5.5417e-01s)

.S. DEPARTMENT OF

Flame Images: 80% H₂ / 20% CH₄

Pressure Gain Combustion – Rotating Detonation Engine (collaboration with NASA and DoD) TECHNOLOGY

Motivation

- Offers significant efficiency and COE benefit: Internal systems models suggest 4.9% increase in GT Efficiency (LHV) and 1.8% increase in Net Plant Efficiency (NGCC with H-Class RDE-GT Hybrid)
- Alternate and additive pathway to efficiency improvement
- Creates a new class of machine reducing COE

ORATORY

Contours of Static Temperature (k) (Time+2.2250e-03) Dec 02, 2014 ANSYS FLUENT 14.8 13d, dp, pbns, spe, ske, transient

780 F-Class CO2 Emissions (lb/MWh) (2479°F) 760 57 (4MW/qI) COE (\$/MWh) 55 (\$/WWh) 20 COE (\$/MWh) H-Class (2709°F) SUO 700 J-Class Emissio (2949°F) CO2 1 X-Class 640 (3107°F) **PGC** 620 64 56 58 60 62

NGCC Efficiency (LHV)

U.S. DEPARTMENT OF

RDE Combustor

CFD model of H₂/Air RDE

Ammonia Combustion

- Attractive hydrogen carrier due to high volumetric energy density, low storage pressures
- <u>Challenge</u>: low flammability, propensity for high NOx/low comb. efficiency
 - Kinetics differ greatly from HC (fuel-N)
 - New, optimized comb. strategies needed (ex. 2-stage rich-lean)
- Requires improved fundamental understanding of kinetics and detailed/accurate model validation data
- Planned approach:
 - Fundamental characterization of flames
 - Stability enhancement via partial reforming NH_3 to H_2
 - Modeling/CFD- NETL and Argonne National Lab

simulation of 50/50

 H_2/NH_3 flame ($\Phi=1$)

1.6%

 CH_4/H_2 work

at NETL

JATIONAL

NOx Formation with a Low-Swirl Injector

Experimental Measurements in the NETL SimVal Rig

"Plateau" effect similar to PSR calculations (due to NNH route).

SimVal Combustor

- Similar results to high-swirl injector.
- NOx appears to be insensitive to H₂ at high temperatures (above 1700K) due to predominance of thermal route.

NOx Entitlement Estimation for H₂

Cantera PSR/PFR Combination Used for NOx Estimates

(Assumes perfect mixing)

- Slight increase in NO at 4 atm and lower temperatures for H_2 due to NNH route.
- Negligible difference at 20 atm for temperatures of interest.

NOx Performance Standards

New EPA Standards based on flowrate / energy

- Emissions regulations based on dry ppm corrected to 15%O2 don't account for additional water produced with hydrogen combustion.
- [flowrate of NOx] / [J energy] is independent of O2/H2O in exhaust.

Example:
T=2000K
P=20 atm
$$100\% CH4$$

 $X_{O_2} = 0.073$
 $X_{H_20} = 0.121$
 $X_{CO_2} = 0.061$ $100\% H2$
 $X_{O_2} = 0.089$
 $X_{H_20} = 0.195$

Conversion Equation:

*
$$NO_x @15\%O_2 (ppmvd) = NO_x \left(\frac{.21 - .15}{.21 - \left[\frac{1}{1 - X_{H_2O}} \right] X_{O_2}} \right)$$

Table 1: New Source Performance Standards for gas turbines¹³

EPA Category (Heat Input at baseload	Market	Fuel	NO _x Limit @15% O ₂ (based on gross
rating [HHV])			energy output)
≥ 250 MW (850 MMBtu.hr)	Both	Natural Gas	15 ppm or 54 ng/J (0.43 lb/MW-hr)
		Other Fuels	42 ppm or 160 ng/J (1.3 lb/MW-hr)

https://asmedigitalcollection.asme.org/gasturbinespower/article/144/9/091003/1143043

Premixed Hydrogen Combustion – Experiments and Model Validation

SimVal 20 atm Combustor

- Studied heat release distribution and NOx emissions with increasing H_2 content (up to 60%) at pressures up to 16 atm.
- OH-PLIF used to characterize heat release.
- Downstream bulk gas sampling for NOx.
- ANSYS Fluent LES with detailed chemistry used for model validation

J.S. DEPARTMENT OF

SimVal Combustor

OH-PLIF Data

