

Ensemble Manufacturing Techniques for Steam Turbine Components Across Length Scales Anand Kulkarni, Siemens Corporation DOE Award: DE-FE-0031808 UTSR meeting: September 27th 2022

Restricted © Siemens AG 2022

siemens.com

This material is based upon work supported by the Department of Energy Award Number DE-FE-0031808. Siemens would sincerely thank Patcharin Burke, DOE FPM and the DOE FECM division for support for the project. Siemens also thanks the team from Siemens Energy in Orlando/Mulheim, EPRI, ORNL and CCAT for valuable project contribution.

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Outline

SIEMENS

Introduction

Project Objective and Team

Project Approach to Meet Technical Targets

Task 2.0 - Digital Manufacturing Efforts for Optimization of Parts for Additive Manufacturing (AM)

Task 3.0 – Steam turbine materials development using AMs for Process-Structure-Property (PSP) relationships

Rask 4.0 – Design and component build efforts using AM

Task 5.0 - Non-destructive evaluation (NDE) inspection of printed components

Task 6.0 – Conduct Rig/Engine testing of AM Steam turbine Components

Task 7.0 - Data-driven AM Qualification & Production scale-up

Project Schedule and Milestones

Technology Maturation Plan

Synergistic Research for Technical Advancements to meet the Cost/Performance Targets Utilizing Additive Manufacturing

SIEMENS

Project information

PI: Anand Kulkarni

Funder: DOE Office of Fossil Energy (FE) – NETL

Strategic Partner: Siemens Gas and Power, EPRI, ORNL, CCAT

Total Project Funding: ~\$7,600K (~\$6M Federal, ~\$1.6M cost share)

Key Research Areas

Advanced turbine design

 Novel blade designs for increased efficiency and reduced CO2 emissions
 Advanced internal cooling circuit for reduced leakages
 Hollow structured blades for reduced loading

Advanced Materials/ NDE

- Improved alloy chemistries for performance improvements -Process-structure-property linkages for multiple AM methods for design window - Advanced NDE concepts for rapid qualification of AM components

Key Contributions to U.S. Technical Innovation

buildup of steam turbine parts - Ensemble processing across length scales for cost reduction

Component scale up & Validation

Advanced Manufacturing

- Adaptive process for rapid

- High powered additive manufacturing process for

steam turbine allovs

- Steam turbine rig for performance evaluation of AM components vs baseline
- Validated flow CFD simulations for improved performance (reduced losses/leakages)

Technical Highlights

Funding Opportunity Objective	Objective of Proposed Program
Applying current AM technologies to an existing part	The application of existing AM processes (Directed energy deposition (Optomec/DMG-Mori, Large area wire manufacturing), Selected laser melting (EOS- M400) and Atomistic diffusion AM (Markforged) for redesigned steam turbine components across length scales for new/repair opportinities.
Improve cost and performance of steam turbine components	Topology optimization for performance improvements for blades, seals and valve components planned. Potential activities include novel blade designs for increased efficiency and reduced CO2 emissions, advanced internal cooling circuit for reduced leakages and hollow structured blades for reduced loading
Retire all risks associated with a follow-on field test	Advanced NDE development for rapid qualification/inspection of AM components. ¬> Functional/performance testing of Steam turbine test rig for turbine flow CFD validation to demonstrate reduced leakages, improved efficiency and reduced CO2 emissions
Potential for repair/replacement of existing part	Potential to develop an on-site repair process via scan to print option for damage parts to create a 3D model to repair or re-print a new one

An ensemble of multidisciplinary technologies to accelerate the development of materials, high-throughput experiments for their qualification and design flexibility/topology optimization for repair/redesign of components for AM

Restricted © Siemens AG 2019

Steam Turbines - Broad range for 50- and 60-Hz-grids and drive application

Bearing

Fixed bearing Single, fixed bearing arrangement between HP and IP turbine cylinders for simple alignment and stable operation. Fixed bearing pedestals

on foundation crossbeams.

SIEMENS

maximum efficiency. The outer casing is directly welded on the condenser under-neath the low pressure turbine casing.

Valve

Combined stop & control val

For easy opening of steam turbine casing valves are connected to the lower part of the outer casing via bolt connection.

Restricted © Siemens AG 2019

Project Team and Activities

					Siemens	Overall Project Lead. Activities involve repair component scanning and CAD
	Anand Kulkarni, Siemens Principal Investigator		rni, Siemens			model repair, Design for AM, CFD modeling, Markforged/Selective Laser
			vestigator			Melting (EOS-M400) materials development, NX based toolpath design for
Materials knowledge, St	team Turbines		Contract Administration			repaired and redesigned components, Component buildup, Steam turbine rig
Anand Kulkarni, Siemens		┢	Kevin Go, Siemens Kathy Sasala, Siemens			testing, Technology maturation into supply chain.
George Atland, Siemens	.		- Contract management		ORNL	Large scale metal AM fabrication Lead. This includes materials feasibility
Valerie Golovlev, Siemens	5	4	Financial Management			selection, process optimization, controls, and toolpath design for repaired and
Sebastien Dryepondt, OR Eric Prescott, EPRI	NL	ŀ	 Financials, invoicing Subcontractor agreements 			redesigned components. Component build up.
 Design and analysis Materials performance 			Senior Technical Advisors	\dashv	EPRI	NDE task Lead. Conduct Field and shop deployable NDE for secondary
- Design for additive man	nufacturing		Xavier Montesdeoca, Siemens			check of finished component quality and critical to the life management cycle
Materials/Process devel	lopment via AM		Thomas Pool, Siemens			of new and repaired components. Will utilize its in-house state-of-the-art
Lonnie Love, ORNL Michael Kirke, ORNI			John Shingledecker, EPRI Tom Maloney, CCAT			volumetric and surface NDE technologies (including standard and advanced
Jeff Crandall, CCAT		H	 Steam turbine design and modification: Advanced Manufacturing 	s		techniques) to determine the best methods and limitations for NDE for the
Henry Babiek - Markforged, EOS M-40	00, Large scale		- Service/field issues			different AM methods and component geometries built within this project.
wire AM, Optomec, DM development	G-Moriprocess	ľ	Program Management Jason Weissman, Siemens		CCAT	Direct energy deposition AM Lead. CCAT will utilize their advanced
Non destructive evaluat	tion	iF	- Risk analysis			manufacturing assets (Optomec and DMG-Mori systems) to develop
George Connolly, EPRI			- Program management	\dashv		processes and fabricate components of interest identified for this program.
Anand Kulkarni, Siemens			Tom Joyce, Siemens			This includes materials development, build components using additive and/or
 Conventional and adva concepts 	Inced NDE		Anett Bergmann, Siemens - Engine/Test rig validation			hybrid machine tools, and measure quality metrics for the builds.

Development Approach For Technology Maturation Plan

SIEMENS

Restricted © Siemens AG 2019

Task 2 - Digital Manufacturing Efforts - Design for AM for Valve Component

SIEMENS

Design for AM to improve contact wear of valve components

Restricted © Siemens AG 2019

Page 8

Redesign to facilitate AM processing

Task 2 - CAD Guided Machining/Repair of Components

SIEMENS

Parts are oversized in AM to facilitate machining.

Scan approach to rebuild CAD model and define machining path virtually and physically

Restricted © Siemens AG 2019 Page 9 Majority of the machining is external

First efforts, data correlates well on the dome side with original CAD with little deviations

Recovered CAD

Bionic valve deviation is likely due to inaccuracy of measuring main axis direction Kulkarni/ Siemens

Task 2 – Digital Manufacturing of AM Components

SIEMENS

Restricted © Siemens AG 2019

AMSense vs CT Scan – Potential for Rapid Qualification

Layer by layer analysis to capture materials and features

Restricted © Siemens AG 2019

Page 11

Deviation Gauge Analysis from Digital Models

SIEMENS

Deviation report

Feature	Amsense mm	CAD mm	Error mm
D1	37.32	37.34	0.02
D2	30.40	30.28	0.12
D3	5.0	4.66	0.34
D4	4.88	4.66	0.22
D5	4.86	4.66	0.2
D6	4.84	4.66	0.18
D7	5.88	5.50	0.38
L1	25.73	25.40	0.33
L2	25.65	25.40	0.25
L3	18.28	17.96	0.32
L4	18.15	17.96	0.19
L5	18.29	17.96	0.33
L6	17.98	17.96	0.02
Н	24.16	24.18	0.02

Feature	CT mm	CAD mm	Error mm
D1	36.88	37.34	0.46
D2	31.12	30.28	0.84
D3	4.48	4.66	0.14
D4	4.30	4.66	0.36
D5	4.28	4.66	0.38
D6	4.32	4.66	0.34
D7	5.32	5.50	0.18
L1	24.92	25.40	0.48
L2	24.59	25.40	0.81
L3	17.11	17.96	0.85
L4	17.87	17.96	0.09
L5	17.06	17.96	0.9
L6	17.95	17.96	0.01
Н	23.32	24.18	0.86

CT Scan Restricted © Siemens AG 2019

CT data showed larger deviation due to edge effects

Task 3 – Materials Development and Process-Structure Property **Relationships**

SIEMENS

Process Development	Materials Data Generation		Mate	erials Te	sting		
		SLM IN718 (40/80 um build)					
UTS for different sets of process parameters	tensile, HCF, LCF, creep/stress rupture, TMF,	Testing duration (days)	Material	Test Type	# Tests	Test Details	Target Cycles
Parameter Set 1 Parameter Set 2 Parameter Set 3	Test Matrix defined for IN718 17-4PH and	45	SLM 718	Tensile	8	X and Z, RT and 650C	
borizontal (0°) vertical (90°)	X12CrMoWVNbN10-1-1	28	SLM 718	LCFTesting	12	X and Z, no hold	Tests with 1000, 10k and 30k cycles to fracture
Microstructural assessment	#Sealing segments - weight: ~3 kg	417	SLM 718	Creep	6	X and Z, 650 C	Up to 10k hours
vertical (90°) horizontal (0°) 0.097% Porosity	length ~ 48 to 70 mm	60 SLM 718 Wear 4 X and Z SI M X12 (40 um)					
<u>300 µm</u> <u>300 µm</u> <u>4 mm</u>	#Stationary drum blades - weight: ~0.1 - 0.6 kg length: ~70 to 350 mm	Test	Test ten	nperature	C	omments	
Standard qualification	#Rotating drum blades - weight: ~0.1 - 0.6 kg Length: ~70 to 350 mm	Creep Rupture 100 Creep Rupture 100 Creep Rupture 100 Creep Rupture 100	kh 0° 5 kh 0° 6 kh 0° 6 kh 0° 6	50 600 500 50		250MPa, 1% s 1 60MPa, 1% st r 70MPa, 1% s	train after 3kh rain after 3kh 200MPa, 1kh train after 3kh
build job	#Last stage blades Second last end stage - weight: -12 kg	Creep Rupture 10	kh 90° 6	20	3 A ratio	160MPa, 1% str ps (sm=0, sm=sa	ain after 3kh , sm=0,3*sa)
	Length: ~520 mm	HCF smooth 0 HCF smooth 0)° 4)° 6	50 00	3 A ratio	1 A ı os (sm=0, sm=sa	ratio (sm=sa) , sm=0,3*sa)

Stationary blade end stage - weight: ~28 kg Length: ~1200 mm

Materials Testing Underway

Page 13

Restricted © Siemens AG 2019

Kulkarni/ Siemens

Tests with 1000, 10k and 30k cycles to fracture

Tests with 1000, 10k and 30k cycles to fracture

Tests with 1000, 10k and 30k cycles to fracture

Tests with 1000, 10k and 30k cycles to fracture

Hold-time 1000LW

LCF 0°

LCF 0°

LCF 0°

LCF 0°

LCF 0°

20

600

600

625

625

Materials data generation for multiple AM processes for performance comparison

Restricted © Siemens AG 2019

Task 4 - Design and component build efforts using AM

SIEMENS

Directed Energy Deposition

LENS * Model 850-R

Large scale Wire deposition

AM Component Redesign	Typical heat rate improvement
Steam valves	Upto 1% (life time extension)
High pressure (HP) turbine	1.5-2.5% (Reduced losses)
Intermediate pressure (IP) turbine	Upto 1% (Reduced losses)
Low pressure (LP) turbine	0.5-2.0% (Reduced losses)
Advanced seal design	Upto 3% (Degradation recovery)
	Kulkarni/ Siemens

Task 4 – Laser Powder Based Fusion

- Industrial implementation of SLM has successfully started **BUT** additional development needs are substantial:
 - Design for Additive Manufacturing
 - **Quality** Robustness and repeatability \rightarrow process
 - **Production Line integration** → standardized interfaces

Task 4 - Large area Wire Arc AM

- Feasibility studies conducted with 316SS •
- Sample Fabrication (Lincoln/Wolf Wire Arc) ٠
 - ABB 6DOF manipulator •
 - ABB 2DOF positioner ٠
 - Lincoln Powerwave R500 welder with with dual wire feeders (multi-torch)

24"

Task 4 – Directed Energy Deposition AM

DMG-Mori Lasertec 65 3D/ Optomec LENS 850R – Hybrid Precision Machining and Laser Powder Directed Energy Deposition

- 5-Axis Metal Powder Additive/Subtractive System
- Milling and Turning
- > 2.5 kW Laserline Laser
- Build complex components reducing part count
- > Wide range of geometries with 5-axis motion
- Reactive and Non-reactive Metals (alloys of: aluminum, steel, nickel, cobalt, titanium, refractory metals; limited studies with graphite, ceramics)

SIEMENS

Connecticut Center for Advanced Technology.

Restricted © Siemens AG 2019

Kulkarni/ Siemens

Task 4 – Low-cost Binder Jet 316/IN718 for Feasibility/Resolution Studies

SIEMENS

Valve components, drum blades and NDE standards printed on new Binderjet process to establish the cost/resolution evaluation. Preliminary trials done with 316 and IN718 (>99% density)

Kulkarni/ Siemens

Cost-Performance Comparison

SIEMENS

High precision, tinted during heat treatment and will be tumbled

High precision, near finish High precision, Low cost

- All blades currently being CT scanned for defects before sectioning for microstructural comparison
- All materials properties to be compared for input to design for cost/performance model
- Working with OEMs on cost model for large volume production costs
- Rainbow set of blades to be manufactured for next rig testing Restricted © Siemens AG 2019

SIEMENS

Stellite-6 Bushings

ExOne Binder Jet Geometry: Acceptable for AM, can be printed with grooves Material: Currently Stellit-6 per TLV997903 AM material: Evaluating IN718 wear properties to see if viable alternative and will evaluate other AM materials Evaluating EBIT for component ranking within ORD

- Stellite 6 bushings Complete cost for new app four valve arrangement \$58,600 for 62 bushings total
- Lead time 120 to 270 days

HP Stop Valve cross-section Restricted © Siemens AG 2019

125,0

Creating a thin shell component further reduced the printing cost, but the L-PBF components are still much more costly

All printing costs are based on a full build plate of components to reduce the heat treat and post processing costs

Binder jet trials, which is a cheaper process to produce IN718 components from powder, were successful for 5-6" parts, scale up efforts planned after confirmation

Current L-ring Seal Business case – WAAM

Task 5 - Non-Destructive Evaluation (NDE) Inspection of Printed Components **SIEMENS**

This task will advance NDE plans for the selected component geometries for quality inspection for process repeatability. Both surface and volumetric techniques will be evaluated via multiple techniques including conventional NDE (eddy current testing and ultrasonic testing (UT)) and advanced NDE (phased-array ultrasonics (PAUT), state-of-the-art UT using full matrix capture (FMC) and total focusing method (TFM)).

Potential NDE Proce	sses for Addit	ively Manufactured Steam Turk	pine Components		
Туре	Process	Example Uses	Rational	Question for Additive	
Eddy Current	Surface-Conv.	Airfoil surfaces, blade root	Conventional surface inspections beyond visual methods	New geometries may make	
Flexible Eddy Current	Surface-Adv	(exposed), shrouds (verification of visual) and seals	Enhanced inspections for curved geometries, hard to access locations	different AM processes give different surface textures	BUNK ONLY
Phased Array UT	VolConv.		Today's state-of-art for crack detection	New geometries may hinder conventional UT process	
TFM/FMC	VolAdv.	Disc attachments, blade roots (attached), repair quality of blades new blade geometry and quality	Full volumetric Data with less part knowledge, Multiple Data Evaluation Schemes (data science enabled), Non-linear examinations	inspections, new grain structures will attenuate UT signals differently, new potential defect/damage locations	
Process Compensated Resonant Technique (PCRT)	VolAdv.	Entire Blade Volume	Quality' Measure for Part-to-part variations, post-test exposure shape and material changes	Can process variations in additive be identified using resonance techniques	s Si an Si Si an Si Si an Si

EPRI has NDE technologies/techniques used currently on steam turbines and being considered for Restricted © Siemens AG 2019 AM produced components

NDE Capabilities

Radiography carried out by MISTRAS Group, Inc. (Monroe NC)

- Ir¹⁹² source; source distance=19in. (483mm); exposure time=23mins*
- Procedure: 100-RT-001 Rev. 18 based upon ASME Sec. V

General observations:

Page 24

- Success in qualitative identification of most internal features except horizontal bridge
- UT imaging superior in detection and SNR
- RT SNR generally lower than 6dB; corresponding metrics could not be extracted for quantitative comparison against UT

AMUTS0 block, ASTM IQI plaque and film arrangement

* Exposure time empirically determined from experience by MISTRAS staff; longer time would improve contrast but would worsen radiographic undercutting

Conventional UT and FMC/TFM outperform conventional RT

Task 6 - Conduct Rig/Engine Testing of AM Steam turbine Components

SIEMENS

- At the university in Hannover, a multistage turbine designed by Siemens is used to analyze turbine flows.
- The current set-up was investigated thru exhaustive measurements and CFD simulations and is a good reference for the planned modifications of blades and new measurement program.
- In blade paths, losses are mainly caused by profile losses, secondary losses and leakages. The leakage flow re-enters the main flow behind the row and interacts with the main flow causing additional losses.
- If the re-entering of the leakage flow can be avoided, substantial reduction of losses are expected as seen by numerical investigations. Restricted © Siemens AG 2019

Page 25

Kulkarni/ Siemens

Task 6 - Conduct Rig/Engine Testing of AM Steam turbine Components

SIEMENS

Assembled test rig

Page 26

Task 6 – Rig Test Results

SIEMENS

A lower normalized total pressure loss or profile loss of 0.7% is observed with 1st iteration

Restricted © Siemens AG 2019

ŝ

The pressure losses are shifted to the outer side wall which clearly indicates the impact of the bypass blades.

-MK1 ----MK2

Page 27

Stationary Drum Stages Blades

1st Iteration

- First trial platform printed in January
 Heat treatment test(on air and on vacuum)
- Sand blasting test
- ➢Dimensional check →optimization of print model needed

Task 7 - Data-driven AM Qualification & Production scale-up

SIEMENS

Restricted © Siemens AG 2019

Five Key Differentiators

Project Approach for AM Process Technologies for Field Trial Ready Components for Steam Turbines

<u>Year 1</u> Process optimization and design for AM for improved component performance	Year 2 PSP linkages and component buildup for production scale-up	Year 3 Performance improvements for AM Components in Steam turbine test rig
 Technical Progress Topology optimization demonstrated for optimal functionality of components Process parameter for optimal materials microstructure optimization Go / No-Go Down-selection of process parameter for optimal deposit density/surface finish across length scales Design for AM for performance 	 Technical Progress Materials PSP linkages established for design Demonstration of robust production control for AM of advanced steam turbine alloys across length scales Go / No-Go Components demonstrated via AM compared to conventional manufacturing (MRL 4) First Rig test to demonstrate performance improvements of 	 Technical Progress AM component performance improvements in test rig AM of multiple components for repeatability and scale-up Defined product specification for NDE inspection of AM parts Program Success Demonstration of field ready AM components in multi-stages to demonstrate reduced leakages and secondary losses in steam turbine (TRL6)/(MRL5)

- Siemens and its partners are accelerating deployment of AM components into Steam turbines
- Digital tools aid with design optimization for AM, support CAD guided machining/repair of components, reverse engineering along with rapid qualification efforts for AM components.
- Materials have been downselected (X12CrMo materials for blades, 17-4 PH for last stage blade and IN718 for valve components) Design analysis showed that IN718 has better properties than IN625. Material property evaluation underway
- Component manufacturing efforts demonstrated for LPBF, DED, WAAM and Binder jetting process. Anisotropy in samples eliminated Markforged process from further component evaluation.
- NDE of all AM samples underway at EPRI and an NDE report will be issued comparing multiple NDE techniques and their potential for inspection of AM components.
- 1st iteration of AM blade design yielded 0.7% reduced losses in steam path. Multiple iterations are underway to demonstrate further improvement and being design reviewed for field deployment.
- A digital process flow is being implemented to demonstrate end to end AM process for faster data qualification

Restricted © Siemens AG 2019

Page 32