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* Constant volume combustion offers greater

70 I I I I I
thermodynamic availability than constant ol Hugonio
pressure COIIlbLlStiOn &E Subsonic Rayleigh Line «—UCJ, ZND
. ) ) g 501 Heat Addition oV
* 4.9% increase in GT Efficiency (.HV) g P
. . . * 40 B
* 1.8% increase in Net Plant Efficiency (NGCC with H-Class 7% -
RDE-GT Hybrid) -?w 30+ wN LCJ]
. . <
* Alternate and additive pathway to efficiency N S R Rayloigh Lin. - _fh“*'?
improvement E Brayton
: o : = 10l |ic. _
* Combine greater work availability to conventional i R\ As Tﬂ
approach to efficiency gains through higher turbine inlet 0] Srype— <
temperatures. | | | Ambient | |
10
-2 0 2 4 6 8 10

Entropy, (S-Sref)/Rreac

H-S diagram comparing constant pressure
combustion (Brayton) cycle to near-
constant volume combustion (Humphrey)
cycle.

* Hydrogen utilization

* Offers potential for distributed power and
Alternative Energy integration
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DOE PGC Program Objectives L LI

* Gas Turbine Integration

Sequence of still images showing

* Improved cycle efficiency Sassage of a strong shock
through the 2D cascade test rig.

* PGC 1s inherently unsteady

) . Rasheed et al. (2004),
* Unsteady flow in the combustor can impact both the https://doi.org/10.2514/6 2004-

. 1207 3 T4 ms 332"ms
compressor and turbine performance. - e

e Mechanical concerns

300 slpm air, no He flow

* Fuel-oxidizer mixing

. o . L . © @
* High turbine inlet Mach numbers are not compatible with industrial
turbines.

Upstream propagation of shock
. waves in a RDE radial injector

* Properly characterize cycle benefits
Bedick et al. (2017),
https://doi.org/10.2514/6.2017-
0785

* Hydrogen-Air Combustion
* Combustion stability

NETL Lab-Scale RDE Inlet Sector
Rig

* NOx formation pathways
* High heat tlux can pose a challenge for component cooling
* Cooling air injector at higher pressurer?

RDE coupled to T63 Turbine at AFRL

¢ Altel'natiVe power CYCICS Naples et al., AIAA 2017-1747
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Pl: Dr. Mirko Gamba (Dr. Venkat Raman [Co-Pl])

* Fuel Injection Dynamics and Composition Effects

015 (%(i;ating Detonation Engine Performance (2017

* Detonation wave — injector dynamics, mixing

* Pressure Gain, Stability, and Operability of
Methane/Syngas Based RDEs Under Steady and
Transient Conditions (2019 — 2022)

* Quantitative description of the loss mechanisms
* Characterize metrics for evaluating performance gains

* Machine learning based approach to combustion
modeling and GPU-accelerated solvers (DOE
Office of Advanced Scientific Computin
Research’s Leadership Computing Challenge —
ORNL Summit Supercomputer)
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Fig. 3 Estimation of average heat release during a RDE cycle using OH emissions.[7]
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Fig.1 Schematic diagram of (a) narrow and (b) wide channel RDC
flow-paths. The two configurations differ only by the inner wall
contour.
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Back-
* A Robust Methodology To Integrate Rotating aee
Detonation Combustor With Gas Turbines To '
Maximize Pressure Gain (2021 — 2024)
* Optimized RDC-Diffuser design for improved turbine FLens
integration
* RDC Channel area profiling to improve detonation stability and
performance Diffuser
* Quantify the impact of loss mechanisms in the combustion
process assoctated with non-ideal mixing, mixed mode
combustion (deflagration/detonation), and wave RDC
mode/numbers in the RDC with a

contoured
nozzle
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* Physics-Based Integration of H2-Air Rotating Detonation into Gas
Turbine Power Plant (2021 - 2024)

* Objectives
« improve turbine overall work extraction with a diffuser-turbine efficiency of 90%
« Air dilution of 100% or less
* Minimize heat fluxes
« Ensure adequate damping to the rotating blades

Scope of Work

e Identify the scaling parameters that emulate the RDC outlet
conditions to enable TRL2/TRL3 testing

e Design and assessment of an optimized axisymmetric
diffuser under pulsating flow

e Optimization and assessment of an industrial turbine vane
under pulsating differ exit flow

Integration of diffuser-vane in
optical accessible RDC

.S. DEPARTMENT OF
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Pl: Dr. Keith McManus and Dr. Kapil Singh

Demonstration of a Gas Turbine-Scale RDC Integrated with Compressor and
Turbine Components at 7FA Cycle Conditions (2022 — 2026)

Project Team /

GE
Research

8

Deep expertise:

« RDC and gas turbine
design

= Gas turbine testing

« Compressor/diffuser
aero

= Turbine aero

» Cooling design, heat
transfer

Computational
Combustion and Aero
UNIVERSTY OF

MICHIGAN
Prof. Raman

Measurements
and Diagnostics

UCF

Prof. Vasu

Georgia
Tech '
Prof. Steinberg

W WE STATE UMAERSITY
 Prof.

Narayanaswamy
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Project Deliverables
Low-loss RDC design for turbine integration
Experimental demos of compressor and turbine integration
Turbine and compressor component performance estimates
in integrated system from detailed test and measurement
RDC-integrated GT performance estimates -/

~

Relevant Prior Work
Air-cooled RDC demonstration
RDC operation on natural gas at elevated T,P
Preliminary gas turbine integration design
RDC performance estimates
USAF RDC Program

LABORATORY

An 48-month, $8.75M project to develop and demonstrate

rotating detonation combustion (RDC) technology
in an integrated gas turbine system.
Project Objective(s): Develop low-loss rotating detonation combustor,

integrate with upstream and downstream turbomachinery components
and verify overall systems performance at F-class turbine conditions.

N

Technical Approach

= Design air-cooled RDC

= Test with Nat-gas HZ mixtures

= Integrate with compressor and turbine
= Test integrated system

= Verify performance based on
high-fidelity data

Technical Challenges

+ ROC operation over large PT range

+ Low-loss RDC inlet design

« Fuel flexible operation

+ Unsteady flow effects on compressor
and turbine performance

) ENERGY
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* Improve fundamental understanding stable continuous wave
detonation

* Wave directionality, bifurcation, translation speed (~CJ)

* Det / shock wave influence on OPCIaUOﬁal Pafametefs (1.6 fuel NETL Characterization of Injector Response using Acetone PLIF
injection/mixing, combustion stability)

* Maximize pressure gain / turbine work availability and
reduce emissions

* Inlet / exhaust transition configuration for turbine integration

* Reduce parasitic losses from deflagration

e Control NOx emissions Varying the Fuel / Oxidizer injection schemes and sizes

* Improve modeling capabilities i)

2.51e+03

Temperature contours
from simulation of RDE
operating on H2-Air
(NETL).

adarld
ZBa+03

* Simultaneous detonation and deflagration (turbulent i | g
combustion model) l%fEEEEEE

L.18e+03

i L0Za+03
§.80av02
A LT
5.30er02
1 E8er02
2.00e+i2
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(]
TaSkS % Low-order (CONVERGE/Fluent) and High-order (Nek5000/nekRS) CFD codes § «
. . . ""G Q Lé.\
* Analysis of Injector Design 28 | £3
=
Effects on RDE Parasitic £S5 — S5
RS §Q
. < X g
Combustion S 5 ] I I [ i
. . < Lffecis of injector Impact of ignition Assessment of Analysis of TCIand 1§
° IﬂV€ Stlgathﬂ Of the ImpaCt Of design on parasitic mechanism on turbulent wall boundary
- . combustion detonation wave combustion models layer effects
RDE Ignition Mechanism on behavior
D eto natlo n Wave Behavlo r Figure 1: Overall proposed joint Argonne-NETL research effort on hydrogen-fueled RDE.

* Exploring Turbulent Combustion Models for Predictive and Computationally-efficient

RDE CFD Simulations

* Argonne will test a CEMA-based dynamic adaptive combustion model [14] which assigns either FRC
or unsteady flamelet progress variable (UFPV) or inert mixing model to the local mixture depending
on the local combustion regime identitied by CEMA.

* High-order Nek5000 CFD Framework for Scale-Resolving Simulations of RDEs and
analysis of TCI and wall boundary layer effects

U.S. DEPARTMENT OF
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Research Activities

Milestones Go / No-Go
1. Develop advanced diagnostics utilizing computer vision and machine learning (07/31/2021). 1. Installation of High-Temperature / Pressure Gas Cell (HTP Cell) in NETL-PIT
2. The impact of long-duration versus short-duration testing on experimental studies of RDEs. (5/31/2022) Fundamental Combustion Laboratory (05/31/2022)
3. Complete / Document installation of axial air injection scheme and exhaust diffuser in water-cooled RDE. 2. Complete installation of an atmospheric optical RDC in NETL-Morgantown

(05/31/2022)

4. Quantify heat flux in the high-pressure, water-cooled RDE. (08/30/2022)

5. Experimental and computational characterization of several advanced inlet designs using a combination of
experimental studies and computational modeling (12/31/2022)

6. Exhaust flow with diffuser characterization in optical RDE (05/31/2023)

7. Develop experimental capabilities for exploration of RDCs with DPE cycles. (10/31/2023)

Deliverables Value Delivered

(8/30/2022)
3. Develop seeding system for optical RDE to facilitate PIV and LDV. (12/31/2022)

1. Documentation of axial air injection and thermally stable operation * Increased NETL experimental capability
(05/31/2022) * Provide insight to heat flux in RDE for research community.
2. Thin-file heat flux and water calorimetry to characterize heat transfer * Provide research community insight to develop/design process for low-loss
(08/30/2022) injector geometry.
3. NOx formation in detonation (10/31/2022) * Characterize NOx formation mechanisms that occur in RDE compared to
4. Experimental / Computational characterization of low-loss injectors conventional deflagration.
()
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Experimental Facility

48 @ ¢ Refractory-Lined
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Cooled
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Operating Conditions
Fuels: H2 and/or Natural Gas
air flow rate @ 600 K — 1 kg/sec
Max. shell T, P = 477K, 16 Bar
Cooling: water @ 150 lpm, 11 Bar

s




NETL Water-Cooled, High Pressure RDE NE ENEKGY

Injector / Combustor Geometry T LABORATORY

Pintle Injector Fuel/Air Combustion
RDE Geometric Parameters Injection Annulus Instrumented
Geometry Geometry Guide Vane
Comb-injector Length Comb Length
{L1)-mm 1335 {L2)-mm 962
Comb inner Diameter
{Di_3.2)-mm R
Comb Outer Diameter Combustor Chamber
{00_3.2)-mm 1488 | Area (A3.2HmmA2 a4zl
Comb Exit Inner Centerbody Exhaust Diffuser
Diameter (Di_8}mm | 1338
Comb Exit Outer Exit Nozzle Throat
- 1488 3371
Diameter (Do_§)-mm Areag (A5]-mmAZ2
Area Inlet AMinimum Fuel inlet AN nimum
Area (A3.1)-mmn2 1262 Areg-mmA2 189
A3.1/A3.2 0.285 AB/A32 0.762

Air Injector A3.1/A3.2 | A8/A3.2
Gap Size (mm

A3.1/A3.2 | A8/A3.2 A o006
009 4
w0 0.2 |

0.32
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NETL Water-Cooled, High Pressure RDE N ey ooy

Instrumentation and Test Condi” i | i LABORATORY

Air Mass Flux T P
[kg m-2 s‘1] air back ::?w.. FASTCAM

[ K] [ k Pa ] . » ‘ . ‘ B < Baster Ace

acAB40-750nm

0.45, 0.6 101.3, 135
450 075, 09 400’ 475 170, 240 UVi 2550-10-525
intensifier
045, 0.6 1013, 135 " Uv-105mm lens
500 075, 0.9 400' 475 170, 240 - ::J:rnrn bandpass
0.45, 0.6 101.3, 135
e 0.75,0.9 400, 475 170, 240
0.45, 0.6 101.3, 135
& 0.75,0.9 400, 475 170, 240
All dimensions in cm.
6501 g
* &os 350
600 — g (o)
e =
. | t . 00 ¢ O 7P (PCB) ® TC (Recessed)
@ IUI: 550 E Air @
£t %% 250 & o Flush o TC (Gas)
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T 500 o ° & 200 % CTAP
3 o) ) ® Pressure (Process)
150 (Omega)
450 ® oW -
° epe ® OH* © Emissions
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Equivalence Ratio lon




Air Flow Rate [scfh]

NETL Water-Cooled, High Pressure RDE

Typical Test Run and Results
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NETL Water-Cooled, High Pressure RDE
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Machine Vision — Deep Learning Application NETL images
TE (B) 1000k

e Train convolutional neural e

network (CNN) on large pool = -

of images with multiple modes g ]
e Utilize CNN to predict wave e "

mode (wave number and Ak

direction of rotation) from a § 3w |

single image v 1] i
* Machine vision approach is b -

being combined with S _ 3CR -

conventional instrumentation Ny N T T R

1]

(p’) to add instantaneous wave
speed.

CE RN RN R
Predicted Classification
FIGURE 16: Nommalized confusion matrix of extended dataset
confaining counter-rotating waves and deflagrative behaviors

FIGURE 15: Downstream images of additional modes (A) 1CR. (B)
2CR. (C) 3CR. and (D) Def

#2128 Y-S DEPARTMENT OF Johnson, Kristyn B, Donald H Ferguson, Robert S Tempke, and Andrew C Nix. “Application of a Convolutional Neural Network fi
} EN ERGY Identification in a Rotating Detonation Combustor Using High-Speed Imaging.”, GT2020-15676 In ASME 2020 Turbo Expo. Virt 1 7
“Birad?

Turbo Expo, 2020.

Purdue images




Real-Time Lab Deployment

* Data acquired and managed in

Python

* Initialization steps

1. SqueezeNet Model pre-loaded
2. Connection to camera and cDAQ

3. Empty variables initialized

* Iterative steps
1. Camera triggered by Pylon

Classification and calculation

2.
3.
4

Diagnostic output plotted

U.S. DEPARTMENT OF
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Computer Vision Object Detection applied to High-
Speed Images

* Wave profiles offer intensity features

NATIONAL

TECHNOLOGY
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suggesting wave direction \
* Features can’t be “hard-coded” ’Ej_ —
* Convolutional Neural Networks NG R=] - -
T
(CNN) can perform feature I : — | — X‘Uj\

* You Only Look Once (YOLO)

* Object detection network
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Alternative Image Analysis — Galloping Waves LABORATORY
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NOx Emission (ppm) — NETL RDE on H2-Air ¥E ENEKGY

NOx Emissions (ppm) — Corrected to 15% O2 LABORATORY

20 NOx Emissions (ppm - Corrected to 15% 02) 400 fnizaton data__ CNN:](g:cnthm e
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(2] Fuel - I ! =~ UV-105mm lens
o ) :jﬂ H ]t | I iLﬂ & : | 390 nm bandpass filter
o 5 [_I E H
300 w 7 = L 3 @ﬂj
. ® S ol | 6425 kN ‘7.44 Center line © 508 45*
E ﬂ Axial window @‘60
= P
210 & @ -250 - .
50
S ‘n &, o 20
= o ® ® L ] 18
'l" 40
® . ‘ -200 16
] & —14 30F
> $ o8 ‘ = g
o 12 <
] © 20§
< 5o
® 8 10
6
0 | . | . . 100 4 °
0 5
0.4 0.5 DIGEquiumgﬁie Ratiguls 0.9 1.0 1‘%_"“9 (se0) 15 20 25
Pback =175 kPa 1. NOx Analyzer (1 sec response)
— -2c-1
20.9 — Oxygen Reference value (%) mflx = 620 kgm S 2. 02 Analyzer
Oxygen referenced conc. = Measured conc.x . _ 3. Gas Sample Storage Tanks (x3)
20.9 — measured oxygen (94) phl =0.8, T, =435K .
air 4. Gas sample line




NETL Water-Cooled, High Pressure RDE
Choked vs Unchoked Exit Nozzle
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Turbine Integration — High efficiency Diffuser

Guillermo Paniagua and James Braun (Purdue University)

b) RDC diffuser

TL

subsonic turbine with
modified endwall

NATIONAL
ENERGY
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At large amplitude efficiency is reduce

Minier=0.3

Combustion
Annulus

Fuel/Air
Injection

75.4% from 90.7%

Minier= 0.6

Centerbody

Liu et al., “Thermal power plant upgrade via a rotating detonation combustor and retrofitted turbine with
optimized endwalls”, Intl J. of Mech Sci,V188 (2020), https://doi.org/10.1016/].ijmecsci.2020.105918
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NETL Optical and Modular RDE (mRDE)

Combustor-Plenum interactions and Combustion Stability

* Optical Access
* Air plenum, combustor and exhaust

e Thrust measurement with ducted exhaust

* Provides performance metric through Equivalent
Available Pressure (EAP)

* Working to develop performance metric for
turbomachinery

* Testing conditions
* Hydrogen-Air (sonic nozzle flow measurement)
* Short duration (~ 3 sec)
* m_ = 0-0.61 kg/sec

* Full diagnostic compliment

* OH Chemi, TDLAS, high speed PLIF/PIV, P, T and
chemi 1onization (ion probe)
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DOE focus is on RDE-gas turbine integration
* Improved cycle efficiency, H,-Air combustion and potential for low NOx emissions.
* PGC is inherently unsteady, fuel-oxidizer mixing, turbine inlet Mach #, characterize cycle benefits, high heat flux

NETL-RIC RDE focus

* Impact of wave mode, reduce combustion losses associated with detlagration
* Maximize work availability at the turbine inlet

* Control NOx emissions

* Improve turbulent combustion models

NETL High-Pressure RDE focus

* Instrumented nozzle guide vane tests

NETL Optical RDE

* Influence of injector on combustion losses
* Performance characterization
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