Integrating a Rotating Detonation Combustor with a Power Generating Gas Turbine to Realize the Pressure Gain

2022 UTSR Project Review Meeting September 29, 2022

Ajay K Agrawal, PI, University of Alabama Joseph Meadows, co-PI, Virginia Tech

LOW EMISSIONS • HIGH EFFICIENCY • FUEL FLEXIBILITY

Annular (left) and radial (right) RDE facilities

Project Background

- The shock laden Rotating detonation combustor (RDC) exit flow is inherently unsteady and spatially nonuniform (hydrodynamically and thermally) with a high degree of periodicity.
- Gas turbines are designed to operate with relatively small velocity and temperature variations at the inlet.
- RDC flow must be properly conditioned to avoid the potentially disastrous negative impacts of flow oscillations on turbine operation, and to achieve the desired performance.

Fig. 4 Schematic (top-left) and photograph (topright) of RDC with diffuser; FFT of axial velocity without (middle-left) and with diffuser (middleright); 2D histogram of velocity without diffuser (bottom-left) and with diffuser (bottom-right) [20].

Background

- In our prior work with Aerojet-Rocketdyne, the RDC was integrated with a diffuser as shown.
- We employed PIV at 30 kHz to measure the flow field at the RDC exit without and with diffuser.
- The integrated RDC-diffuser system was operated at high chamber pressures of about 450 kPa.
- Diffuser eliminated the oblique shock wave and coherent flow structures and periodicity associated with it. Diffuser also reduced the circumferential flow velocities.
- However, the axial velocity varied between 300 m/s and 1,200 m/s.
- Axial flow fluctuations can be problematic to turbine operation.

Back-

Fig. 1 Conceptual Diagram of RDC-turbine integration; F-class turbines (left) and aero-derivative turbines (right).

- In this study, we will develop robust methodology to condition the RDC flow to reduce spatial and temporal non-uniformities.
- We plan to utilize converging section with a contoured profile of the combustor channel.
- Rapid reduction in area downstream of the detonation will constrain the detonation products. This would increase detonation stability, decouple detonation from reflection waves, and constrain flow towards the axial direction.
- Rapid reduction in area is followed by gradual reduction in area of the channel.

Annular RDE Test Stand and PID of Reactant Supply System

Image of the Rotating Detonation Combustor at the University of Alabama

> Wave Speed \approx 2000 m/s, Max Flow Velocity > 1000 m/s

> 10 cm Diameter RDC \longrightarrow Power Output: Up to 5 MW

Data Acquisition Capabilities

Probe Measurement

- Pressure at upstream and downstream of sonic nozzles at 10 kHz
- Temperature at upstream of sonic nozzle at 10 kHz
- RDC Pressure measurement
 - Plenum Pressure (CTAP) at 10 kHz
 - Static Pressure (CTAP) at 10 kHz
 - Dynamic pressure (PCB) at 1 MHz
- Ionization Probe Measurement at 1 MHz
- High Speed Imaging
- > OH*/CH* Chemiluminescence
- > Particle Image Velocimetry (PIV) at 100 kHz
- Rainbow Schlieren Deflectometry (RSD) at 300 kHz

PIV Features

C	אר	1D	2	C	Т		N
	R				D		
THE	UNI	VERS	ITY	0 F	ALA	BA	MA

Parameter	Value
PIV Acquisition Frequency	100 kHz
Camera Framing Rate	200 kHz
Camera Exposure	5 μs
Delta T (Time lag bet ⁿ 2 laser pulses)	500 ns
PIV ROI	192 pixel * 128 pixel
Spatial Resolution	102 micron/pixel
Seed Particle	ZrO ₂ (dia. 200 nm, melting point 3000 K)
Laser Sheet Thickness at ROI	~1 mm

PIV Image Acquisition Summary

PIV image pairs/Test: ~60000 Image pairs/cycle: 14-16 Cycles/Test: 3800-4300

TSI Signal: Laser-1

TSI Signal: Laser-2

Presentation Overview

- Methane-hydrogen blends
- RTG profiling of the Inner wall of RDC channel
- Plenum chamber with optical access

Computational effort

Wave Mode Analysis

Pressure Measurements

Video @ Velocity Magnitude

Experimental Condition

- Fuel: CH₄
- **Oxidizer:** O₂/N₂ (66.6/33.3 %V)
- **Total Mass Flow Rate:** 0.7 lbm/s
- **Global Equivalence Ratio:** 1.0

Start Time: ~105 ms after SOI Video Duration in Actual Test: 0.6 ms Video Frame Rate: 10 frame/s

•

٠

AR 1, CH4, 0.7 lbm/s

AR 1.4, CH4, 0.7 lbm/s

AR 1.7, CH4, 0.7 lbm/s

2000 1800

1600

1400

1200 1000

800

600

400

200

Velocity Magnitude [m/s]

10

Cycle to Cycle Variation at RDC Exit

COMBESTION LABORATORIES THE UNIVERSITY OF ALABAMA LOW EMISSIONS + HIGH EFFICIENCY - FUEL FLEXIBILITY

	Node Location		Axial Velocity				Circumferential Velocity	
Circumforantial (20 Nodes)		Area Ratio	μ (m/s)	σ (m/s)	% data in µ±100m/s	% data in µ±200m/s	% data in ±200m/s	% data in ±300m/s
$\begin{array}{c} \text{Second for the formula (20 Nodes)} \\ X = -7 \\ X = 0 \\ X = -7 \\ X = 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$		1.0	819	246	29	56	36	55
	X = 0; Y = 1	1.4	872	215	30	63	59	81
		1.7	995	197	38	70	63	84
		2.0	953	182	42	74	73	90
**All dimensions are in mm	$\mathbf{X} = 0 \cdot \mathbf{X} = \mathbf{C}$	1.0	899	301	20	42	39	64
		1.4	913	318	18	39	69	89
	X = 0, T = 0	1.7	1093	257	24	51	67	87
		2.0	1129	234	30	58	73	91
	X = 0; Y = 11	1.0	921	323	20	40	47	72
		1.4	959	387	13	28	76	92
		1.7	1100	294	21	44	72	90
		2.0	1184	250	25	54	77	93

Convergent Nozzle: Area Ratio 1.4

Convergent Nozzle: Area Ratio 1.4

0 0

90 [°]

CH4/Single Wave

CH4/H2 Blend: Multi (two) Wave

180 ° 270 ° 360 ° 450 ° 540 ° 630 ° 720 ° 810 ° 900 ° 990 ° 1080 °1170 °1260

Phase Angle

RDC Channel with Profiled Inner Wall

PIV Results

30

Plenum Chamber with Optical Access

Plenum Chamber

Optical Access

Combustion Chamber

Previously Used Optical Spool

Window for Camera Side

Window for Laser Side

Questions?