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The Concept: Pumped Heat Energy Storage (PHES)

PHES Value Proposition
e 10+ hours of storage

Charge Mode Discharge Mode * Separation of engine and storage
Use excess energy to run heat pump Use thermal reservoirs to run heat engine «  Potential for high round trip efficiency (RTE)
& store energy in hot and cold reservoirs & generate power
Technology Gaps
- * System costs
Qu G Some component development
W * First implementation challenges
g e Control and operational unknowns

Heat Win
Q qumpﬁ - ;7 Q
Q¢ ‘

Developmental Challenges

* With well-established technologies, most
performance-based demonstrations are
required at scale

* Full-scale systems are aiming for 100 MW, 10+
hr, make at-scale demonstrations expensive
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Project Objectives & Facility Expectations

What value is there with a small-scale demo? Small-scale Demo
5kW,1hr | 0.25acre | $2.5M

n

 “Machinery performance will not translate

 “Performance will not be representative”

Demonstrate operation of a air Brayton PHES at laboratory scale
to verify system control strategies. Address first implementation

challenges and reduce the number of unknown unknowns. Full-scale System

100 MW, 10+ hr | 10 acres | $SS
e Operation of the full system will be first-of-a-kind

 Operation and controls do translate
— Transient sequencing
— Thermal stresses
— System dynamics

— Control of balance of plant
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Full-scale Pumped Heat Energy Storage FIALTA

Charge Mode Discharge Mode
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Molten Salt
Heat Exchanger

Molten Salt
Heat Exchanger

Molten Salt at 565°C
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Motor

Compressor
100 MW

Antifreeze at -60°C

Antifreeze

Heat Exchanger .
RTE ~60%

includes separate drivetrains for each mode with shared heat exchangers
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Incorporated many design decisions to reduce technical risks and project costs including scale and storage media

Charge Mode Discharge Mode

Lab-scale Pumped Heat Energy Storage @'
-

- Thermal Qil at 350°C

<€

—aq

Water-Glycol at -10°C

RTE ~10%
includes separate drivetrains for each mode with shared heat exchangers
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GT2020-15657

Reduction in RTE for Small-scale Demonstration

Max RTE

49%

24%

10%

Case

0.5 1
Full-scale system with current technologies

0.0 1
Small-scale turbomachinery efficiency

 75% isentropic compressor efficiency = ol
» 85% isentropic turbine efficiency ' |
I
Storage systems I E
e Thermal oil instead of molten salt for hot _15' | 4 | : | |
storage media 3 S : g z
* 400 °C max storage temperature Hot Storage Temperature [°C]
* Water-Glycol instead of advanced \ Y /
refrigerant for cold storage media At lower Hot Storage Temperatures, lower
« -35°C min storage temperature PR results in higher RTE
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Highly coupled and iterative design process

Cycle Optimization
Are all design/hardware constraints captured?
Does the model reflect updated controls?

Component Specification °
Turbomachinery, HX, Storage systems 10°
Can a design result from this cycle? 3
& 107
g
10°
Controls |
What are the best control methods for the system? 10° 10t Speed [rom] 10° 0°

Do these adequately represent the full-scale system?
Is our valve configuration and sélection sufficient for the model?

Plant Layout

Pipe losses, thermal stresses
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We intended to leverage commercial off-the-shelf (COTS) hardware...

i (i L0 COTS: Coolant pump,
i air cooler, valves,
COTS: Valves, piping, strainers l tanks, flow meter
instrumentation |

Not: Pipe diffusers

Turbomachines....

COTS: pump, flow meter,
T T g valves

= Not: Tanks, heater
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Two new turbine aero designs

* Integrated a motor-generator
between the impellers

* New bearing and seal layout

e Thrust balance mechanism

* Incorporated multiple cooling features
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Main Loop Controls:

Motor/Generator

Compressor Recycle

Isolation valves
Control valve

Inventory control (Fill/vent)
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Hot Loop Controls:

Pump

Recycle
Isolation valves
Control valve
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Design point cycle conditions updated with as-built hardware

Charge Mode

Discharge Mode

Warm Qil Tank Hot Oil Tank Warm Qil Tank Hot Oil Tank
305°C Hot Heat 305°C Hot Heat
Exchanger Exchanger
tat 0 lal o
i [ | ¥
Q Air: 0.47 kg/s Q Air: 0.69 kg/s
r 3
— ) .
Charge b - =|- CWOFkin ) Y Charge Discharge ~|__ L CWorkc,ut' - - - Dlscharge
Turbine | .— . | Compressor Compressor| _» Turbine

7 N /’ ~\\
6 ( Water/Glycol: 1} 3l Water/Glycol: }
tat N\, 0.13kgls ¢ (1 | al 1™._ 048 kgls .+
- | ,_:___:__: == = P L
Cold Heat Cold Heat ir Codler
Exchanger Exchanger

Cold Coolant Tank

Cold Coolant Tank

(1) The cycle is grounded
to ambient conditions
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(2) Coolant flow rate

difference between modes
12



(1) The cycle is grounded GT2022-83424

to ambient conditions

Steady State Optimization Results Ambient
Temperature
Warm Qil Tank Hot Qil Tank 1
e | 20 °C 27°C | 20°c | 40°C
0.12+ ! . =~ [ Main Loop
".m s " 27 °C Charge PR i 1.73 1.73 1.82
0104 _ . = f: = = B Charge MF kg/s 0.58 0.58 0.58
) . ! =" 40°C Discharge PR ] 1.62 1.58 1.59
: - e ' l"'I Discharge MF | kg/s | 0.52 0.52 0.52
o8 | = — w' gl mF Hot Storage
Cold Coolant Tank Ambient Cooclant Tank f . f HOt T OC 348 338 335
: =t
06 - _aiP Charge MF kg/s 0.32 0.38 0.38

Discharge MF ka/s 0.52 0.24 0.21
Cold Storage

=
0.04_ J . |

______________L___________I‘__

rl?' PI"_ Cold T °C -14.7 -13.45 | -13.19

' f Charge MF kg/s | 0.09 | 011 | 0.08

0.021 £5a = Discharge MF | kg/s | 027 | 032 | 0.24

wor
‘.l- & System
= m® RTE % 10% 10.5% 8%
0.001 - =
300 320 340 . 360 380 400 As Ambient Temperature |, As Ambient Temperature P
Compressor Exit Temp [C] * Charge cold MF * Charge cold MF J
a » Discharge cold MF 4 » Discharge cold MF 4,
e RTEA * RTEV
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(2) Coolant flow rate GT2022-83424

difference between modes

Steady State Optimization Results Ambient
Temperature
0.121 i g _
*'.I g " 27 °C
0.10 - g ¥ '=: = = u Forcing mcharge & mdischarge
5?‘ | F‘. for the coolant and oil separately
0.08. *-':_ .E._I#' to be no more than 25% different
"-' w 'y !
= uf g ’” | results in a decrease in RTE.
< 0.06 -r"""r o |
g i 27 °C
0.04- . 7 , guuem =
| I
llrf f " '
n = - :
0.021 f o »- '_._-P :
.l.'.fr a" ¥ ! Ultimately, this is a design variable and could
0.00. O '_ - at a" i result in different implementations of the same

| | | | | system for different use cases.
300 320 340 360 380 * Long charge mode with short discharge mode
Compressor Exit Temp [C] .
* Two charge systems and one discharge system
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Where are we today?

Test
e Tr|a|24 Augzozz
Turbocompressors [ e,
. 251
* Mechanical check-out (complete) < |
* Bearing break-in (complete) I
* Instrumentation verified (complete) 5 15]
* Closed loop operation (in process) 2
g
05
0 [
Main Piping Loop
* Pressure check (complete) »
* Instrumentation verified (complete) o
100 TBroo_comr e [
iy T_BRG_D_COMP_OUTB 0 W]
g o Tereorors e o
- o Z\:/ii(:éDE:TURBZOU'FBJSO
85
80 : L ! !
15:30 15:45 16:00 16:15
Time May 03, 2022

© SOUTHWEST RESEARCH INSTITUTE MACHINERY DEPARTMENT 15
www.machinery.swri.org



Where are we today?

Cycle Analysis Facility Design Procurement Transient Analysis Assembly Commission Test
Aug 2022

oy

Cold Storage System

* Pressure check (complete)

* Instrumentation verified (complete)

* Coolant filled & circulating (complete)

Hot Storage System
e Pressure check (complete)
* Instrumentation verified (complete)

* Coolant filled & circulating ( ) T — | —
45 ool
* Pre-heat check-out | j '

13:30 13:45 14:00 14:15
Time
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Operational Goals

Steady State Operation

* One hour steady state in both modes

e Operation across a 20 °C range of ambient
temperature

* Demonstrate generation power control

Transient Operation

* Many operational profiles with sequencing variations

e Charge mode cold start with various recycle flows

e Hot start with variations on sequencing and timing
for both modes

e System balancing
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Translating Technical Challenges

Purpose-Built Machinery

* While machinery conditions were within design Custom aerodynamic & mechanical designs
experience (similar to turbochargers), purpose build
hardware did not exist

* Small modifications eventually became custom design to
achieve desired steady-state performance and off-design
operational requirements.

Optimal Performance v. Operational Balance

* Optimizing for RTE performance results in cycle conditions
that cause storage system imbalance

* Maintaining a balanced system will incur a performance
penalty

Both design challenges are true for the small-scale demo and
full-scale commercial system
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