

Thermodynamic Properties	Solar Turbines A Caterpillar Company		
	Hydrogen	Natural gas	CO2
Heat capacity (kJ/kgK)	14.3	2.3	0.839
tatio of heat capacities	1.4	1.3	1.3
Speed of sound (m/s)	1320	450	280
$\frac{P_2}{P_1} = \left(1 + \frac{\eta}{c_p \cdot T_1} \cdot H\right)^{\frac{\gamma}{\gamma - 1}}$			
Caterpillar: Confidential Green			

Hydrogen Applications

Solar Turbines

- Compression Electrolyzer or SMR to Pipeline Pressure: 20 bar to 100 bar
- Pipeline Transport: Low Pressure ratio, 100 bar
- Storage: From pipeline pressure to 200-300bar
- Fuel Gas Compression to 20-30 bar (Gas Turbine), or 500-900 bar(automotive)

7

aterpillar: Confidential Gre

What to do with CO₂

Solar Turbines

A Caterpillar Company

13

aterpillar: Confidential Gre

Solar Turbines

A Caterpillar Company

Power Plant Options for Carbon Avoidance

- Transport Hydrogen to a Power Plant
- Transport Natural Gas to the Power Plant, and
 - Make Blue Hydrogen, using SMR, or
 - Use Natural Gas as a Fuel, and Capture the CO2 in the exhaust

19

Transport: Pipeline Simulations
Source to be a constrained of the same of the same distance (500 miles, 800 km). The operating pressure is 2200 psig to avoid two-phase flow at all prevailing ambient temperatures. The calculations shown are for 37.8 °C (100 °F) gas temperature at the head station discharge.
A hydrogen pipeline for the same distance (500 miles, 800 km), 1440 psig operating pressure, transporting 1000 MMSCFD, also with 3 compressor stations equally spaced.
A 500 miles (800 km) natural gas pipeline, for 700 MMSCFD, 1440 psig operating pressure, gas with SG=0.58.

GR	ogen	or Ca	arbo	n Capt	ture with)	Solar Turbines
	EGR (post using SM produce a will not n bottomin	t-combust R to make a lesser an eed nearly g cycle wil	ion) may k H2. EGR v nount of C y as much Il be comp	be a better ap vill be more e CO2 at a given water as the s	fficient, will power level, and SMR. A EGR since the		
Combustion CC	(Burnes e rformance Configura	t al., ASM Comparisations and	EGT2022- on to Pr 1 a Bott				
Combustion CC Configuration rela	(Burnes e rformance Configura ativized vers	t al., ASM Comparise tions and us the Base	E GT2022- on to Pr 1 a Bott eline	83472) e- and Post- oming Cycle			
Combustion CC Configuration rela	(Burnes e rformance Configura ntivized vers Baseline	Comparise tions and us the Base Pre-Comb - SMR	E GT2022- on to Pr l a Bott eline Post-Comb - EGR	83472) e- and Post- coming Cycle Baseline+Bottoming Cycle			
Combustion CC Configuration rela Configurations Gas Turbine Available Power (Full Loa	(Burnes e rformance Configura ntivized vers Baseline 1.000	Comparise tions and us the Base Pre-Comb - SMR 1.053	E GT2022- on to Pr l a Bott eline Post-Comb - EGR 1.010	-83472) e- and Post- coming Cycle Baseline+Bottoming Cycle 1.333			
Combustion CC Configuration relations Gas Turbine Available Power (Full Loa Demand Power	(Burnes e rformance Configura ativized vers Baseline a) 1.000	Comparise tions and us the Base Pre-Comb - SMR 1.053 1.000	E GT2022- on to Pr l a Bott eline Post-Comb - EGR 1.010 1.000	e- and Post- oming Cycle Baseline+Bottoming Cycle 1.333 1.000			
Combustion CC Configuration rela Configurations Gas Turbine Available Power (Full Loa	(Burnes e rformance Configura ntivized vers Baseline 1.000	Comparise tions and us the Base Pre-Comb - SMR 1.053	E GT2022- on to Pr l a Bott eline Post-Comb - EGR 1.010	-83472) e- and Post- coming Cycle Baseline+Bottoming Cycle 1.333			
Combustion CC Configuration relations Configuration	(Burnes e rformance Configura ativized vers Baseline a) 1.000 1.000	Comparise tions and us the Base Pre-Comb - SMR 1.053 1.000 1.026	E GT2022- on to Pro a Botteline Post-Comb - EGR 1.010 0.992	e- and Post- oming Cycle Baseline+Bottoning Cycle 1.333 1.000 1.333			
Combustion CC Configuration rela Configurations Oas Turbine Available Power (Full Loa Demand Power Thermal Elificincy of Qas Turbine Parasific Power rel to Full Load - %	(Burnes e rformance Configura ativized vers Baseline a) 1.000 1.000 0.0%	Comparise tions and us the Base Pre-Comb - SMR 1.053 1.000 1.026 10.0%	E GT2022- on to Pro d a Bott eline Post-Comb - EGR 1.010 1.000 0.992 10.0%	e- and Post- toming Cycle Baseline+Bottoming Cycle 1.333 1.000 1.033 1.0%			

Impact on Power Plant discussions Solar Turbines A carepilar compary Blue Hydrogen: Hydrogen generation likely near power plant Green Hydrogen: Transport Path Costly, unless the end use is for Hydrogen, not for electricity Blue Hydrogen with Carbon Capture vs. Burning Natural Gas with Carbon Capture

Conclusions **Solar Turbines** A Caterpillar Company Reduction of Carbon Footprint requires a number of specific compression and transport duties. - Hydrogen - Natural Gas $-CO_2$ • Transport and Compression of Hydrogen is very Energy Intensive • Compression of CO2 in the Capturing Process is very Energy Intensive • Hydrogen transport is more power intensive than CO2 and Natural Gas Transport Combined. • Decisions to be made in discussions of blue vs green hydrogen vs. Carbon Capture Caterpillar: Confidential Green

