Fluidized Bed Catalytic Reactor/Receiver for Renewable Fuels and Chemicals

Greg Jackson & Stephanie Kwon Colorado School of Mines

Thermal-Mechanical-Chemical Energy Storage (TMCES) Workshop August 3-4, 2021

Concentrating Solar Energy Storage

Earth • Energy • Environment

Colorado School of Mines

 Concentrating solar technology can capture solar energy at GWh_{th} scale with high efficiency.

Solar receiver/reactor for syngas as chemical precursor

Earth • Energy • Environment

Colorado School of Mines

- Oxide particle energy storage for sCO₂ power cycles requires ≈ 10,000 m³/GWh_{th}
- Gasoline $\approx 112 \text{ m}^3/\text{GWh}_{\text{th}}$
- $NH_3 \approx 256 \text{ m}^3/\text{GWh}_{\text{th}}$
- Solar receiver/reactor can capture solar energy efficiently (> 80%) with angled cavity walls at ≥1000 suns.
- Can concentrating solar energy be used to make high energy liquids?.

Solar-driven fluidized bed CH₄ reformer

At reactor *T* between 600-700°C over oxide-supported metal catalysts Dry reforming: $CH_4 + CO_2 + 260 \text{ kJ/gmol} \Rightarrow 2 \cdot CO + 2 \cdot H_2O$ Steam reforming: $CH_4 + H_2O + 206 \text{ kJ/gmol} \Rightarrow CO + 3 \cdot H_2O$

Narrow-channel, fluidized beds for solar reactors

Earth • Energy • Environment

Colorado School of Mines

Product CO, H₂ Unreacted CH₄, H₂O, CO₂ flux ($\dot{Q}_{
m solar}
m sin(heta_{
m w}))$ of low/no insolation sCO₂) ai solar 60 eating wall Alternative for periods o Concentrated

Reactant inlet: biogas, H₂O, CO₂

Visualization of narrowchannel fluidized bed

- Narrow-channel fluidized beds can achieve high wall heat fluxes into particles for a solar reactor.
- Extensive testing to T > 500°C has led to reliable correlations for particle-wall heat transfer coefficients h_{T,w}.
- Pathways to h_{T,w} >> 1000 W m⁻² K⁻¹ have been identified and are under development.

Comparison of experiments with correlations adapted from Molerus (1992)

Design and performance of solar-driven reformers

Earth • Energy • Environment

of low/no insolation

sCO₂)

ei ei

eating

Alternative I for periods o

ଛ

Reactant inlet:

biogas, H₂O, CO₂

Product CO, H₂

Unreacted CH₄, H₂O, CO₂

wall solar flux ($\dot{Q}_{
m solar}
m sin(heta_{
m w}))$

Concentrated

0.9

0.4

0.3

Colorado School of Mines

 Catalyst particles and inlet gas pressures can be tailored such that solar wall heat fluxes match reaction enthalpy requirements to achieve high conversion densities for solar driven reactions with wall temperatures amenable for structural metals.

a) Predicted wall T_w and q''_w vs. h_w for solar concentrations *C* with external wall angles of 12.5° normal to solar flux and reactor $T_p = 700^{\circ}$ C.

b) Heat flux and CH_4 conversion for reforming 1:3 CH_4 : H_2O in 2-cm-deep bed at $T_p = 700^{\circ}C$ as a function of inlet *P* for 4 particle diameters d_p of Ni/Al₂O₃ catalysts.

Solar reactors for renewable fuels

Earth • Energy • Environment

- Solar energy can react biogas, waste gas, and/or recovered byproducts with CO₂/H₂O to liquid fuels through F-T process or NH₃ through H-B process.
- Solar reactor receiver can use state-ofthe-art catalysts with particles sized to optimize heat transfer to support highwall fluxes for cost effective systems.
- Efficiencies
 - > solar to syngas > 80%
 - > syngas to liquid fuels via F-T ≈ 50%

Colorado School of Mines

Solar reactor/receiver can be integrated with known infrastructure to provide cost-effective, low-to-zero carbon footprint fuels and chemicals