Thermal Batteries – Concept, Economics and Progress to Date

Asegun Henry Robert Noyce Career Development Chair Associate Professor Department of Mechanical Engineering Massachusetts Institute of Technology

Thermal Batteries

Electricity \rightarrow Heat \rightarrow Electricity

Water Cooled MPV with Integrated Mirror

<u>Storing heat is 10-100X cheaper</u> than storing electricity electrochemically in a normal battery.

Simple estimate:

Why is the cost so low?

Even after we add the cost of everything else i.e., other components + construction etc. The cost still comes out < \$10/kWh

Inert Containment

Construction

Transfer Fluid

Medium

Graphite Insulation

Pumps and Piping
Cooling for Base
Tank Base
Fiberglass Insulation
Aluming Insulation

With other system costs added < **\$10/kWh**

Economics vs. scale: The bigger the better

Pumping

Why Multi-Junction Photovoltaics?

Thermophotovoltaic Cells

- Photovoltaic cells that convert light from a terrestrial heat source are also called thermophotovoltaic (TPV) cells
- TPV has not been used much for power generation because the efficiency has been lower than a turbine
- The world record efficiency for TPV was 29% for 40 years
- Record was broken last year at 32%
- We set a new record 41%

Technological Breakthrough: MPV Cells

- Our new record = 41%
- RTE for thermal batteries = MPV efficiency
 - < 1% charging loss in converting electricity to heat
 - < 1% per day heat loss to environment</p>
- > 35% RTE is needed for arbitrage
- 40% is high enough to commercialize
- 40% is higher than average turbine
- Target is to reach 50%
 - Improve mirror reflectivity from 94% to 98%
 - 98% reflectivity in TPV was recently demonstrated
 - Use 4 terminal devices to exceed 50%

New Record 41%

Why Use MPV Instead of a Turbine?

- Turbine
 - Doesn't currently exist
 - Large barrier to new turbine deployment
 - > \$100M of R&D
 - New materials + New HXs
 - Min-Hour response time to full load
- MPV
 - Much lower barrier to deployment
 - Lower cost < \$0.5/W-e
 - Similar efficiency (50-55%)
 - Fast response time (seconds)
 - Fundamentally new cost/learning curve
 - Lower maintenance

Turbomachinery

VS.

MPV

What will the full system look like?

Full scale system mockup: 1 GWh = 100 MW x 10 hrs of storage

116F

НF

H F

1167

Sweeping Noble Gas Curtain (SNGC)

Sweeping Noble Gas Curtain (SNGC)

Tungsten Liner

Assembled Cavity and Entry Tube

Exploded View Showing Layers

SNGC Demonstration

 IV curves taken with bulb concentrator before and after >6 hours of testing in the cavity

Without deposition prevention

2150C without W liner or SNGC protection

1167

What's Next?

- Build a prototype 1-10 kWh
- Pumping
- Full 1900-2400°C cycles
- Emitter Deposition Protection
- TPV modules
- Long term testing

What's Next?

- 1 MWh pilot demonstration
- Single repeat unit
- Same dimensions as large scale
- 4 graphite blocks
 (0.6 m x 0.6 m x 2 m)
- 200 kW TPV modules ~ 2 m² → 20,000 cells
- Long term cycle testing

Questions?

Pumping Silicon at 2000°C

ttiji-

MPV Cell Development

MPV Cell Development

- Back reflectance measured ~ 92%
- Peak cell efficiency ~40%
- Limited by series resistance (high current)
- More optimization of series resistance
- Thinning and reduction of highly doped layers

What's Next?

- Build a prototype
- Pumping
- 2500°C Heaters
- Emitter Deposition
- High current density
- High reflectivity (> 98%)
- High efficiency (\geq 50%)
- Long term testing

The Problem: Climate Change

- Climate change is the most important problem and an imminent threat to our species' survival
- Cost of renewables has dropped, but penetration onto the grid is limited by the lack of storage

Year

Energy Storage is the Key

- The studies listed below all reach the same conclusions
- Renewable penetration onto the grid is limited without storage
- Current penetration (~25%) —
- Need order of magnitude cost reductions to achieve a > 80-90% renewable grid
- The current state of the art (Li-ion) will never get there

Estimates based on:

- N. Sepulveda et al., Nat. Energy DOI: https://doi.org/10.1038/s41560-021-00796-8
- P. Albertus et al., Joule DOI: https://doi.org/10.1016/j.joule.2019.11.009
- M. Ziegler et al., Joule DOI: <u>https://doi.org/10.1016/j.joule.2019.06.012</u>

Energy Storage is the Key

M. Ziegler et al., Joule - DOI: <u>https://doi.org/10.1016/j.joule.2019.06.012</u>

We need lots of storage!

- How much storage do we need?
- Storage needed \cong generation capacity
- Global electricity production ~ 9TW
- California's load is ~ 30 GW

- > 30 GW of storage is needed to even reach 50% penetration
- We need as much storage as generation for decarbonization

Current state of the art

Li-ion Batteries [\$150-350/kWh] Pumped Hydro [\$50-100/kWh]

Too expensive Target < \$20/kWh Too expensive & Geographically limited Not cheap enough Slow ramp

Pumped Heat Storage

[\$35-50/kWh]

1

Current state of the art

Any technology that relies on a turbine will have a response time on the order of minutes to 1 hr

When the sun goes down, fossil turbines – have to turn on quickly to compensate for solar turning off

To achieve high penetration and stabilize the grid we need storage that can respond in seconds

Thermal batteries can respond in seconds!

