

Technology Options for Hydrogen Compression

Klaus Brun, Ph.D.

Elliott Group

Carbon-Free or Decarbonized Energy Pathways

- Green (wind/solar/hydro) and nuclear electricity direct
 - Centralized or distributed
 - Requires storage or peakers for load following
- Green and nuclear (red) hydrogen (electrolysis and pipeline transport)
- Fossil fuel (blue) Hydrogen (mostly from natural gas)
 - produced at fossil production site
 - produced at end-use site (pre-combustion carbon capture)
- Fossil plant post combustion (flue gas) carbon capture
- Fossil fueled oxy cycle plants

Requires Carbon Capture

Hydrogen Compression

Elliott Centrifugal Compressor Train

Pure Hydrogen Compression

Compression Applications:

- Pipeline Recompression (1400 psi)
- Head Station (Electrolyzer or Steam reformer to Pipeline Pressure or Liquids Plant)
- Fuel Supply to Power Plant
 - a) Gas Turbine Combustor Pressure from reformer (500+psi)
 - b) Storage Tank Pressure (7000 to 14000 psi)

Elliott Flex-Op™ Compressor PR 1.2-1.4

PR 2.2-6.0

PR 1.5-3.0

PR 10+

Hydrogen versus Natural Gas

- Light Gas (MW=2): low density, high speed of sound, high leakage
 - Many effects to piping & compression systems
- Wide flammability range, negative J-T coefficient at pipeline conditions
 - Affects safety

Source: Dennis, R., 2020, "Hydrogen Storage: A brief overview of hydrogen storage options," TMCES Workshop, NETL, Pittsburgh

	Natural Gas	Hydrogen
Mol. Wt.	16.8	2.0
Density (lbm/ft³)	3.4	0.34
Sound Speed (ft/s)	1375	4480
J-T Coeff. (°F/psi)	0.05	-0.004
Lower Heating Value (Btu/lbm)	21013	51598

Data from NIST REFPROP at 70°F, 1000 psi with "Gulf Coast Gas" mixture

Design Challenges of Pure Hydrogen Compression

- Light gas compression
 - Low pressure ratio
 - Many stages (mechanical/rotordynamic) or high speed (high stress, novel materials)
 - Equation of state
- Sealing
 - Dynamic (seal leakage, scavenging)
 - Static (soft component hydrogen permeability and decompression bubbling)
- Materials and coatings
 - Hydrogen embrittlement (material loses ductility due to H₂ penetration)
 - Coating loss and disbonding
- Safety
 - Explosivity, wide flammability range, dispersion and impact radius, leak detection

Light Gas Compression

Hydrogen Compression

- For the same geometry, speed, and number of stages for a hydrogen versus natural compressor, the hydrogen compressor produces similar head but significantly lower pressure ratio.
- To reach a desired pressure ratio, significantly more head is required and thus more power is required.
- To achieve desired higher head and higher pressure ratio, one can:
 - Increase the rotational speed
 - Increase the impeller diameter
 - Increase number of compression stages
- Material yield strength is limited to 120 ksi (827MPa) per API to avoid hydrogen embrittlement. This limits the impeller speed and diameter.

Pure hydrogen compression requires either:

- Large number of compression stages
- High tip speed impellers

Pure Hydrogen Compression

- Conventional Compressor (<u>1200 fps</u> tip speed impellers)
 - Electrolyzer to Pipeline PR=2.5 40 impellers (4-5 cases)
 Pipeline recompression PR=1.3 8 impellers (1-2 cases)
 CGT Fuel Gas Compression PR=2.0 30 impellers (3-4 cases)
- High Speed Compressor (2400 fps tip speed impellers)
 - Electrolyzer to Pipeline PR=2.5 10 impellers (2 cases)
 Pipeline recompression PR=1.3 2 impellers (1 case)
 CGT Fuel Gas Compression PR=2.0 8 impellers (2 cases)

High Speed Compressor Challenges:

- Materials
- Seals/Bearings
- Drivers

Hydrogen Compression

- Elliott has been building hydrogen compressors since 1955
- Over 100 hydrogen-rich compressor trains produced from 2001-2021
- Elliott has built compressors for a wide range of application from pure hydrogen to hydrogen rich process applications

Advanced Impeller Materials for Hydrogen Service

- Allow for higher impeller spin speeds with materials with higher strength-to-density ratio
 - Current standard is MS-212H (17-4 PH stainless steel/105 ksi minimum yield strength)
 - API 617 limits material to 120 ksi maximum yield strength
 - Titanium alloys are not ideal for hydrogen service

Advanced Ceramic Matrix Composites Aluminum 6061 or Aluminum 7075 Continuously wound carbon fiber in epoxy matrix through additive process

Hydrogen Coatings

- Prevent and limit hydrogen embrittlement
- Improve erosion and corrosion resistance
- Anti-fouling

... but all coatings will eventually be worn away, spalled, or dis-bonded.

Cannot be used to increase material yield strength limits for long term service applications.

Advanced Impeller Designs for Higher Tip Speeds Wheels

- Allow for higher impeller spin speeds (higher head) by reducing stress
- Use additive manufacturing for structural optimization

Elliott 39HT Nitric Acid Turbocompressor 1,124 fps - 1961

Concepts NREC 2,100 fps 7075-T6 Aluminum impeller

Baker Hughes HPRC – 2015

Elliott large diameter wheels

Or a more conventional solution... Flex-OpTM Compressor Arrangement

- 3-4 integral barrel arrangements with casing optimized speed
- High flow, high ratio, high efficiency
- Potential to engage/disengage individual compressors and switch between series and parallel operation
- Intercooled
- Multiple side streams/extractions
- Compact with ease of access for maintenance and repair
- Process gas free from oil contamination

VFD Arrangement (with Voith gearbox)

Case Study: Hydrogen Pipeline Transport

- Speed: 15,000 RPM
- Power: 7500 HP
- 100% hydrogen
- Intercooler between Body 2 and 3
- Flow: 240,000 kg/day
- 4X 15MB9 Casings
- Pressures: 365 PSIG inlet to 1015 PSIG discharge
- 2.78 Pressure Ratio

Demonstrated industrial design works for pipeline applications and is available now.

Thanks a lot! Questions?

Klaus Brun, Elliott Group

kbrun@elliott-turbo.com

+1 210 262 2213