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Technical Questions Addressed

1. What is the origin for the electrochemically driven phase change in an SOC electrode?
What would be the theoretical model based on measurable variables to predict this phenomenon?

How to validate the theoretical understanding?
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Origin for electrochemically driven phase transformation in the
oxygen electrode for a solid oxide cell
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2. Why is the performance stable while the nickelates go through a severe phase transition?
What is the thermodynamic base for conjugated phenomenon between activity and stability?
1 How does the interface influence the act|V|ty/durab|I|ty relationship?
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3. How to use the understanding of electrochemically driven phase change to develop reliable and
reproducible accelerated measurements?

What is the physical process being accelerated?
What are accelerated test protocols for other constituents and electrochemical systems?




Technical Questions to Be Addressed

Cost (1$/kg-H,):

Durability (A/1000-h or W/1000-h)

How to achieve high-performance SOECs?

What are the factors limiting the performance
stability of an SOEC?

Technical questions to be addressed by this project

How to establish theoretical understanding of the durability of SOECs based on measurable variables?

What are the effects of operating modes (e.g., constant I and constant /') and materials properties on the
SOEC performance durability?

How to calculate crack growth rate with respect to measurable properties?
What are the factors limiting cell current density and durability?
Is delamination inevitable? Is there a critical condition for the delamination?

How does the interlayer chemistry at the oxygen electrode side influence current density and
performance durability? How about the fuel electrode?

What’s the proper accelerated test method to study SOECs? ,
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Solid Oxide Cells: Coupled O?/e- Transport

SOFC to generate electricity; SOEC to produce H,

% Solid Oxide Fuel Cell (SOFC) % Solid Oxide Electrolysis Cell (SOEC)
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Oxygen Electrode: %02 +2e” - 0% Oxygen Electrode: 0%~ — %02 + 2e”

Electrolyte: High 02~ conductivity. Low e~ conductivity. ~ Electrolyte: High 0?~ conductivity. Low e~ conductivity.
Fuel Electrode: H, + 02~ - H,0 + 2e~ Fuel Electrode: H,0 + 2e~ — H, + 0%~



Analysis of u,, Distribution in Solid Oxide Cells

* Local chemical equilibrium occurs at 7 in the solid electrolyte.
0,(7) + 4e~(#) = 20%~(¥)
Lo, () = 2 figz-(7) + 4F @(7)

* Two independent fluxes are ionic current and electronic current

P d _
T 2Fdz Hoz-
d
I, = _JeE(p
«  Governing equations (steady state):

Oxygen conservation: EI" =0

Charge conservation:% (I; +1,) =0

Boundary Equation
Electrolyte/Fuel I, = —— (@FE — gel)
electrode ) e
z=1
( ) I = AFFE (o; — 4F FE — #512 +4F °l)
L
Electrolyte / Oxygen ;=1 (@OF — @)
electrode (z = 0) SnE
1
li = = or (Wo; — 4F@F — G, + 4F )
15
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Virkar, A. V. Journal of Power Sources 147.1-2 (2005): 8-31



Effect of Operating Voltage on u,, Distribution

in the Electrolyte of Solid Oxide Cells
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The p,, Distribution in the Electrolyte of Solid

Oxide Celis
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Analysis on Electrochemically Driven

Phenomenon

Hence, during cell operation, i, within the electrolyte is mathematically bounded by corresponding values at the two
electrodes (gas phases), meaning ,ucath"de > Uo, > 1o, = ua”"de which can be derived as follows:
'uoz — 'uozthode + 4€(TCI _ Tecle) Hcathode 48(7‘C|I | + Tecll D <Hcathode

Reducing condition in the interfaces. Assuming the ideal gas law for oxygen, we obtain ug‘;thode = po, + kBTln(Pf)‘;th"de),

where ug is standard state gas phase oxygen chemical potential and Pocgth"de is the oxygen partial pressure at the cathode
(gas phase). Eqg. [5] gives:

exp[—

¢ . pcathode
Py = PO2

4e(rf|1i|+rglle|)]
2

kT
o P(():‘ < Pcathode

2
o P§,/ P§ihode ~ (rfII| + 1|1, ).

o T=800°C (1073 K), (r{|I;| + ri|I.|) = 0.2 V; P§2"°%€ = 0.21 atm; then P§, ~ 3.7 x 107> atm

o The local oxygen partial pressure (the level of reducing condition) depends on both r{|I;| and 15|1,|. The most reducing
location is at the immediate cathode/electrolyte interface.

- A. V. Virkar, Journal of Power Sources,
Overpotential 0.05V 01V 0.2V 0.3V : 172[2] 713.24 (2007),

Dogdibegovic, Wang, and Zhou, PNAS
P, (atm) 0.024 0.0029 3.7x10° 4.9x10”7 6.5%x10° (2022)




Thermal vs. Electrochemical Phase Evolution
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Points to take

» Reproducible results with multiple cells per each condition. Dogdibegovic, Wang, and Zhou, PNAS, 2022
» Phase evolution is accelerated with electrochem. operation in full cells.

> Relatively stable cathode materials (in thermal equilibrium) may not be stable in SOFCs.



Performance Stability vs. Interlayer Chemistry
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Points to take: S . d ASR GDC "

» Multiple cells for each condition for both PNO and PNNO electrodes ummarize VSs. cells.

» 3x reduced performance degradation in PNO/PrO, cells. ASR Ohmic Electrode Total
» Stable operation was measured on multiple sets of cells and cathode m - - .
compositions with the PGCO interlayer. PrOx-GDC 500" hour %] 22%)| 15%]
> Reduced R, (tMIEC — 10,) due to extended rxn. zone. PGCO 500t hour 16% 28%) 22%)]

» Reduced Rohm (|Rgb with [Pr]?1)’

IS. Liibke et al. SS/, 117, p.229 (1999). Dogdibegovic, Wang, and Zhou, PNAS



Distribution of u,,in an Electrolysis Cell

Absence of crack formation

T: 800°C T:800°C
—— 1.2V & 0.41x10* A/m? |
——1.3V & 0.57x10* A/m?
——1.4V &0.73x10* A/Im?
—— 1.5V & 0.89x10* A/m? ]

1.6 V & 1.05x10* A/m?

rF=5.10"° Q:m?
rOf=10"* Q-m?

G, =6.67x107 S/m

2 4 6 8 10 O Q=7
Analvtical It 0 2 4 6 8 10
nalytical result: _zl (um) Z (um)
OE|EL _ | Ly 0El
Ho,(z) = ugt {4FI (_OE ) 4FI, = )JI ug? +E1~1 riE WFIr0F,
lonic flux electronic flux
contribution contribution [ = Veeu — Ey
*  High operation voltage/current raises i, at OE|EL (z=0) in most cases. ' R;;
. Raising o, decreases pp, at OE|EL (z=0) and reduces Faradaic efficiency L Veoil
T R 12

Wang. Y. et al. Journal of The Electrochemical Society, 2022 169 044529



Analysis of u,, Distribution in Solid Oxide Cells

Effect of transport properties, constant V and constant |

: 500 -100
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Wang. Y. et al. Journal of The Electrochemical Society, 2022 169 044529



Analysis of u,, Distribution in Solid Oxide Cells

Effect of electrolyte thickness and fuel composition
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Wang. Y. et al. Journal of The Electrochemical Society, 2022 169 044529
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po.8 : Transport Property Effect

10 6 50
(C) (d) Constant voltage @ 1.4V
> 81 —~ 41 = _100- Constant current @ 7300 A/m? |
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* pe = 5,878 atm with crack radius of 1 pm

* Alow r”% is preferred to suppress p,F5. At a constant V,,, of 1.4 V, the critical 7% is ~ 5.4 x 107> Q
m2. For a constant I; of 7,300 A/m2, the critical 7°F is 7.5 x 107> Q m2.
« A constant current electrolysis is not suitable for studying an unstable electrode material, which

potentially leads to the formation of cracks and even electrode delamination.

* Ahigh r2% is in favor of reducing p5’”.

Wang. Y. et al. Journal of The Electrochemical Society (2022)



6 H,O vol%
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(d) mm= (Constant V
@ 1.4V
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cell

log(Prpe/Po)
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* Vg is higher than 1.44 V leads to pj.® > p., under the simulated conditions

Per=2,878 atm

* Alow H, vol% in the fuel electrode results in a high pgf B at constant voltage operation and a concentration

less than 32% can lead to crack growth.

+ The effect of H, vol% on png is marginal under a constant current electrolysis.

Wang. Y. et al. Journal of The Electrochemical Society (2022)



SOEC with a Penny-shaped Crack

Criterion for Griffith Crack to Propagate

The crack can not conduct I; or I,.
On the surface of crack

I Nepgek =0 e Nepger =0
At the edge of the crack (r=c) is TPB

1
EOZ(CTCLCIC) + 2e7(OE) = 0%~ (SE)

AGp, < 0 & pglec* > piPs:
Oxygen moves out from the crack
* AGy >0 & ugho*t < uphh:
Oxygen pumped into the crack

 The existing crack can propagate when the
pressure inside the electrolyte exceeds the
critical value p,.

* pp.” is the highest pressure can be reached.

* po® > pe : crack can propagate

Wang. Y. et al. Journal of The Electrochemical Society, 2022 169 044529



TPB crack
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High Performance SOEC - Thinner Electrode
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Role of Microstructures: the porosity (¢) and tortuosity (7).
A high ¢/; value will result in a high Faradaic current at the

electrolyte/ electrode interface.



Reversible Cell Performance
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Effect of Interlayer on SOFC Performance
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Effect of Interlayer SOEC Performance
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Machine vision processing of microstructural

images acquired from electron microscopy

We obtained a set of 326 SEM images (Slice id # from 001 to 651 in increments of 2), each of which is 1536 by 1024, 8
bits per pixel. We initiated work to detect and track the pores in this initial set.

Our goal in this phase is to extract the holes, represented by the black image regions (hereinafter referred to as
“blobs”), and track them. We can then calculate the tortuosity measure from the sequence of tracked blobs.

Image List of Tracked Tortuosity
sequence blobs blobs measure
+ Segmentation * Tracking based on * Based on the I.el_wgth of
* Post segmentation clean matching location, the path that joins the
up shape, size of blobs list of tracked blobs

The extraction and tracking processes are being developed in parallel. The ultimate goal is to use deep learning for
extraction of the blobs.

To facilitate the development of the tracking process, we temporarily use a simple thresholding method to extract the
blobs.
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Image SegmentationS

Input :Original FIB-SEM images

l l i | l el

16'16'256 1616256 3232256 64'64'128 12812864

128*128"32 64'64°64 64"64"128 32°32'128 32*32"256

tile size:
256256

128*128°64
256'256"3

1024*1536 pixels

25625632

convolutional + RelLu

max pooling

Transposed Convolution + ReLu

Transposed Convolution + Convolutional

QQQ0
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Blob Tracking

A sequence of 4 slices (Slice ID #323 to 329) shown left to right. A random set of 26 blobs (bounding boxes in orange) were
selected from Slice 323 (left) and tracked in the 4 slices using blob location.

Ongoing work is to incorporate shape and size in the matching criterion and to allow forking or joining of tracked
paths
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Tortuosity

m Suppose we have a sequence of N tracked blobs with
centroids x; for i =0,--- ,N —1

m Let ds be the shortest distance between xg and xp_1 so that
ds = ||x0 — Xn—1]]

m Let d, be the path distance from blob to blob:
dp = ilo |Ixi = xial|

m Define Tortuosity 7 as

d

T({XOa T ,XN—l}) = d_:

m 7 varies between 0 and 1
7 = 1 when d, = d; the shortest distance
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