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Background: Cr in SOC Stack

Cr from metallic part in the stack High Py, in SOEC lead to increased P, relative to SOFC
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Background: Cr to Poison Benchmark LSCF
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Previous Results From WPI on La,NiO,
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Previous Results From WVU: La,NiO,-LaCoO; Heterostructure
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Proposed Novel La,NiO,-LaCoO,; Heterostructure

Sr-free, fast O-conducting
LNO backbone plus active
OER LCO surface coating as
Cr-resistant, high performing
oxygen electrode

LCO-based
Perovskite

YSZ electrolyte
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Critical Factors to consider

* CF1. Cr Resistance: It is well known that Sr is the main reason for the Cr poisoning
due to the formation of SrCrO,. The new oxygen electrode candidate should not
have Sr;

* CF2. Oxygen lonic Conductivity: R-P phases and perovskites have totally different
oxygen ionic conduction mechanisms. Dopant choice and interface engineering is
needed to achieve excellent bulk conductivity and interfacial ion exchange;

* CF3. Interfacial Stability: The infiltration with LCO-based perovskites will
introduce the interfaces with LNO and LDC barrier layer respectively. Dopant
choice is needed to control the bulk and interfacial phase stabilities;

* CF4. Long-Term Degradation Mechanism: Accelerated test will be carried out to
simulate the long-term degradation performance. However, it is imperative to
validate the accelerated test mechanism is identical to which under the real
operation conditions.



Overall Approach & Objectives

Materials Level Cell Level
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When fully optimized, this oxygen electrode material will target to an INTRINSIC long-term degradation rate of less than
0.3%/1000 hrs at 700°C. By the end of the first year, it is expected to reach the 0.8A/cm? current density at 1.4V applied
potential. By the end of the project, we will reach 1 A/cm? current density.



Task 2: Experimental exploration and verification

(1) LCO-based Materials

Various B s (e.g. Ni, Cu, Mn) as

surface co

(2) Chemical Stabilities Under Cr-Containing
Gas Impurity Conditions

Volatile Cr species LCO-based
. Perovskite
(a) Crint QFbased coating
(b) inter ayer and substrate

YSZ electrolyte

LNO backbone
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Task 2: Experimental exploration and verification

(3) Electrical Conductivity and Conductivity
Relaxation Experiments

G
Ca . LCO-based
Cs perovskite

ECR sample configuration for OER kinetics on the
heterostructured interface. (a) sample top view, (b)
sample cross section

LCO-based
Perovskite

YSZ electrolyte
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Task 2: Experimental exploration and verification

ECR on porous sample to evaluate the oxygen surface exchange coefficient

Solution for D&k co-control scenario Solution for k control scenario
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Task 2: Experimental exploration and verification

Synthesis of Sr-free perovskite surface coating materials
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Pure phase achieved for each perovskite material at 800C



Task 2: Experimental exploration and verification

Chemical compatibility between LNO backbone and coating materials
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Task 2: Experimental exploration and verification

Fittings for samples with Heat: for 0.8atm-1.0atm at 600°C
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Task 2: Experimental exploration and verification

K-Values for the pure samples at different Oxygen partial pressure and varying temperatures
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Task 2: Experimental exploration and verification

K-Values for samples with Heat at different Oxygen partial pressure and varying temperatures

(a)

2.50E-03

2.00E-03

1.50E-03

1.00E-03

K Values with Heat (S/cm)

5.00E-04

0.00E+00

(c)

2.50E-03

2.00E-03

1.50E-03

1.00E-03

K Values with Heat (S/cm)

5.00E-04

0.00E+00 !

Partial Pressure of Oxygen (0.2 atm- 0.4 atm)

550 6?0
Temperature (C)

450 500 550 600 650 700 750
Temperature (C)
Partial Pressure of Oxygen (0.6 atm- 0.8 atm)
450 500 650 700 750

(b) Partial Pressure of Oxygen (0.4 atm- 0.6 atm)

2.50E-03

2.00E-03

1.50E-03

1.00E-03

5.00E-04

K Values with Heat (S/cm)

/

0.00E+00
450 500 550 600 650
Temperature (C)
d .
(@ Partial Pressure of Oxygen (0.8 atm- 1.0 atm)
6.00E-03
5.00E-03
B
£ 4.00E-03
L
g
© 3.00E-03
=
‘2 2.00E-03
(%]
(0]
3
= 1.00E-03
>
x —e
0.00E+00 i
450 500 550 600 650 700
-1.00E-03

Temperature (C)

r—_—_—_—__\

| —@—LNO+LNCO I

\_________J

LNO+LNFO
—&— LNO+LCO

r—_—_—_—__\

| —@— LNO+LMNO I

pPmmmm—————

| —@— SELF-COATED LNO|

\_________J

750

17/30



Task 2: Experimental exploration and verification

K-Values for samples with Cr at different Oxygen partial pressure and varying temperatures
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Task 2: Experimental exploration and verification

Summary:

The chemical compatibility between LNO(r-p phase) and LCO-based
perovskites were confirmed.

ECR tests were carried out in the following three conditions:
e After doping (coating as is)
e After heat treatment (aged at 700C for 200h)
e After exposure to Cr (exposed to Cr source at 700C for 200h)

The following candidates worth the further experimental and modeling

verification
* LNO
e LCO
 LMNO
* LNCO
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Task 3. Simulation on Oxygen Electrode Stabilities

* Interfacial stability of LNO/LCO heterostructure interface

La,NiO, LaCoO,

NV

2,30

Interfacial Energy R-p phase Perovskite

Ya/p = (NintEa/g— (NgE4 + NgEg)) /24
Nint: The number of atoms for the interfacial structure A: The area of the interface

Ny,: The number of atoms for phase A in the interfacial structure
Ng: The number of atoms for phase B in the interfacial structure



Task 3. Simulation on Oxygen Electrode Stabilities
Example
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Task 3. Simulation on Oxygen Electrode Stabilities
Dopant stability in La,NiO, La vacancy

La,;(NigO,, supercell La,(Ni,Ca, 03, supercell La,sNi,Ca, 03, supercell

——a
Charge neutral




Task 3. Simulation on Oxygen Electrode Stabilities
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Task 4 Simulations on the Oxygen Electrode Conductivity
NEB approach
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Task 5: Fabrication and operational evaluation of
electrode with heterostructured surface

Introduction: Wet-Impregnation of Nano-Catalyst for SOFCs/SOECs

Objective: to deposit full phase, LaCoO, (and similar) nano-catalyst via controlled deposition throughout a
porous structure of the electrode at temperatures <800 °C.

Proposed Solution: use of poly-norepinephrine (pNE) and other catechol-like surfactants to properly chelate
the complex higher-order nano-oxides in orderly, non-agglomerated fashion.

Bio-inspired catechol
adhesive (similar to
that on muscle foot)
used to controllably
deposit nano-catalyst.

Ho:©/\( NH,
o COOH

DOPA

HO NH,

C%h

HO
Dopamine

l

OH
HO NH,

HO
Norepinephrine

Polymerization Chelation Nucleation

________

______

Catechol deposited in first-step within the porous electrode in aqueous solution.
Salt solution then impregnated in second-step to deposit and nucleate/grow onto
surfactant coating.




Task 5: Fabrication and operational evaluation of
electrode with heterostructured surface

Lanthanum Cobaltite Powder Study: Alternative Surfactant Study

A study has been in process to deposit LaCoO; nano-oxide powder at lower temperatures. The below
surfactants were chosen due to similarities to previously proven pNE and lower cost.

Gallic Acid
O OH

HO OH
OH

O

DHBA
OH

OH

OH

Norepinephrine

OH
HO NH>

HO

HO

Caffeic Acid

WOH

Procedure: Combined lanthanum nitrate, cobalt nitrate, ethanol/water. Added surfactant powder to
form a solution. Mixture dried by stirring at 75°C until gel-like, and then further dried in oven at 200°C.

Each of these were formed into 0.01M and 0.1M solutions, and then split into batches to fire at 600 °C,
700 °C, and 800 °C. X-ray diffractometry was completed to determine powder composition.




Task 5: Fabrication and operational evaluation of
electrode with heterostructured surface

Lanthanum Cobaltite Powder Study: 800 °C pNE XRD Results
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pNE: 0.01 M Concentration

Note: 0% pNE results in <10%
LaCoO, formation (at 800 °C)

LaCoO;: 61.3%

* Co0: 12.1%
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2« Additional results have been collected for other

Figure 1: 0.01M pNE XRD graph (to; SUrfactants showing that DHBA is the next best
(bottom), both fired to 800 °C. (* in gyrfactant, followed by gallic acid then caffeic acid.

pNE: 0.1 M Concentration




Task 5: Fabrication and operational evaluation of
electrode with heterostructured surface

Initial Nano-Catalyst Deposition: AFM Images

Figure 2a: 3 um x 3 um AFM image of Figure 2b: 3D topographical representation of CoO on YSZ
CoO on single crystal YSZ substrate substrate, 3 um x 3 um

= The above CoO nano-oxides on single crystal substrates were studied preliminarily to analyze effectiveness of
surfactants and to analyze both grain size and nanoparticle distribution of similar nano-oxides.

= These results were obtained with the poly norepinephrine surfactant at 1mg/ml, and fired to 750 °C.



Task 5: Fabrication and operational evaluation of
electrode with heterostructured surface

Nano-Catalyst Deposition in Symmetrical Cells: SEM Imaging

100 n m X 150,000

kv
Figure 3a: Symmetrical LSCF cell infiltrated with CoO, aided by a

polymerized norepinephrine surfactant coating.

5.0

—10 nm X 300,000

5.0 kV
Figure 3b: Closer view of symmetrical LSCF cell infiltrated with

LaCoO03, aided by a poly norepinephrine surfactant coating.




Overall Approach & Objectives

Materials Level Cell Level

Task 2 (Li & Liu) i |
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When fully optimized, this oxygen electrode material will target to an INTRINSIC long-term degradation rate of less than
0.3%/1000 hrs at 700°C. By the end of the first year, it is expected to reach the 0.8A/cm? current density at 1.4V applied
potential. By the end of the project, we will reach 1 A/cm? current density.



Thank You!

Thanks for the Program managers, Jason Montgomery and Andrew O’Connell
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