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Detrimental Sr-segregation and precipitation at perovskite oxide surfaces

Z. Cai et al., Chem. Mater. 2011, 24 D. Oh et al., J Mater Res. 2012, 27     J. Druce et al. Energ. Environ. Sci., 2014, 7
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Sr segregation and Cr & S poisoning of La0.6Sr0.4Co0.2Fe0.8O3

Cr Poisoning Nucleation Theory:
CrO3(g) + SrO(s) → Cr–Sr–O(nuclei)(s)

Cr–Sr–O(nuclei)(s) + CrO3(g) → Cr2O3(s)

Cr–Sr–O(nuclei)(s) + CrO3(g) + SrO(s) → SrCrO4(s)

S.P. Jiang, X. Chen, Int. J. of Hydrogen Energy, 2014, 39.
K. Chen, S.P. Jiang, Electrochemical Energy Reviews 2020, 3.

LSCF-GDC electrodes after operation at 200 mA/cm2, 900˚C:

SrCrO4

LSCF

Degradation

XRD, EDS, SEM  formation of SrCrO4 and Cr2O3 on LSCF surface.

S.P. Jiang et al. J. Electrochem. Soc., 2006,153, A127

S Poisoning Nucleation Theory:
SO2(g) + SrO(s) → SrSO4(s)

LSCF bar samples in the presence of 20 ppm SO2 at 900˚C:

Degradation

XRD, EDS, Raman  formation of SrSO4 on LSCF surface.

C. C. Wang et al. J. Electrochem. Soc., 2014, 161

S.P. Jiang, X. Chen, Int. J. of Hydrogen Energy, 2014, 39.
K. Chen, S.P. Jiang, Electrochemical Energy Reviews 2020, 3.

5μm
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This project aims to attack the degradation pathway coupling surface chemistry to impurity poisoning on 
perovskite oxygen electrodes, taking LSCF as a state-of-the-art electrode. 

: LSCF    
 

SrO segregation + CrO3 → SrCrO4, Cr2O3
SrO segregation + SO2 → SrSO4

Poisoning by chromium and sulphur

: Cr deposits
: S deposits

    
    

  
   

 

Insulating SrO, Cr-
and S-deposits inhibit 

surface oxygen 
evolution reaction.

Oxygen 
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LSCF surface is free 
of insulating SrO, and 

Cr- and S-deposits; 
enabling fast oxygen 
evolution reaction.

  
   

  
 

 

 

Surface chemistry control 
No SrO segregation → prevent Cr- / S-poisoning

O2

O2-

Sr

CrO3

SO2

O2-

(c)

1. Improve the chemical and electrochemical stability of the surface of LSCF, both the initial oxygen
exchange kinetics and durability.

2. Develop infiltration chemistries to enable the surface modifications, to suppress the Sr-segregation
and the Cr- and S-poisoning processes.

3. Advance our understanding of the role of operational parameters on oxygen-electrode surface
chemistry and performance, combining experiments and computations.



Methods to achieve project objectives 
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LSCF oxygen electrode 
surface chemical 

modification by solution 
infiltration.

Characterization of surface 
chemistry (Sr-segregation, 
Cr- / S-poisoning) by XPS 
and AES, oxidation and 

bonding (XANES, EXAFS).

Electrochemical 
characterization of the 
electrode performance 

and stability.

First-principles-based 
modeling of surface phase 
and reaction mechanisms. 

Guide design of best 
surfaces.

Collaboration with PNNL 
using well-established 
button cell fabrication 

process.
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Perovskite oxide surface more stable and has faster oxygen exchange kinetics 
with oxidizable surface-cations.

LSC: Tsvetkov, Lu, Sun, Crumlin, Yildiz, Nature Materials, 2016, 15 (9).
LSM: Bliem, Kim, Yildiz, J. Mat. Chem. A. 2021
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Lee et al. Yildiz, J. Am. Chem. Soc., 2013, 135.
Kim, Bliem, Hess et al. Yildiz, J. Am. Chem. Soc., 2020



Surface modification of LSCF to suppress Sr (and ultimately Cr, S)
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Our current system:

SSZ electrolyte disc (support)

Gd0.2Ce0.8O1.95 (GDC) barrier layer

Gd0.2Ce0.8O1.95 (GDC) barrier layer

LSCF-GDC electrode

LSCF-GDC electrode

 

LSCF: (La0.6Sr0.4)0.95Co0.2Fe0.8O3

  
   
  

Cells fabricated at PNNL

Well-established button 
cell production process:
• Screen printing
• Sintering

Microstructure

10μm

ScSZ
electrolyte

LSCF/GDC composite 
on GDC barrier layer

Our approach controls surface chemistry through a physically-based and practical single-step infiltration:

As-prepared LSCF

Infiltration

Aqueous solutions of 
metal nitrates, acetates 

and chlorides.
Infiltrated LSCF

Annealing

Anchoring of metal 
oxides on/into the 

LSCF surface

LSCF

Near-surface doping

Annealing conditions: 
Temperature, 
potential, gas.

LSCF

Metal solution

Surface-modified LSCF

Metals: Zr, Hf, Ce, Pr, Nd
Infiltration parameters: 

Reagent concentration, metal 
loading, surfactants.

Hf, Zr, Ce, Nd, Pr



Electrochemical Characterization of Oxygen Electrodes at MIT

8

Double Chamber 
Electrochemical Setup
•I-V measurements
•Electrochemical impedance 
spectroscopy (EIS)

Surface chemical 
characterization: XPS, AES, EDX

Charge transfer 
impedance

ScSZ electrolyte

LSCF/GDC
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EIS analysis at OCV – Hf, Zr infiltration stabilizes LSCF cells

 For relative Rp changes, as prepared cells fall into a wide, monotonically increasing region (dashed black lines)
 Infiltrated cells show significantly suppressed Rp increase – LSCF stabilized by infiltration
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Polarisation Resistance: Rp = R1 + R2
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Chronoamperometry analysis – Hf infiltration stabilizes current profile 

 As prepared cells: steady decrease in current vs. time
 Hf infiltrated cell: stable over 7 days – fluctuations due to furnace
 Zr infiltrated cell: initial stabilization but then sharp degradation 
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Improvement in electrochemical stability and activity with Hf
infiltration in LSCF porous electrode (of OxEon)
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Samples made by OxEon (Tyler Hafen and Elango Elangovan)



XPS post-mortem analysis – dissolution of dopants at T > 600°C

 Infiltrated Hf/Zr species exhibit dissolution away from surface at T > 700°C)
 Surface Sr 3d component constant to 500/600/700°C, much larger increase at 800°C (upon near complete 

dissolution of Hf).
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SOFC Testing with and without Uncoated Metal Interconnect

• Cr contamination from uncoated IC limits oxygen adsorption or oxygen exchange process as indicated by 

DRT peak at 0.1 – 1 Hz

• Ohmic resistance significantly increased compared to test without IC.

Cr poisoning

750oC at 0.8V
50%H2+50%H2O
Air

With IC

Without IC

 



Experimental summary – Hf/Zr infiltration stabilizes LSCF surfaces

 Preliminary findings thus far:
1. Hf and Zr may increase LSCF cathode stability,

by suppressing increase in polarization resistance.
2. Hf/Zr are diffuse away from surface at T > 600°C, 
but still improve cell stability:
 Possible sub-surface influence?

 Future work:
1. Repeat experiments with new batch of samples 

from PNNL.
2. Investigate larger dopants: Nd, Ce, Pr which may 

not diffuse away due to their larger size.
3. Incorporate infiltration into sample preparation for 

Cr/S poisoning tests.
14
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Aims to answer two questions: 
 What is the realistic surface reconstruction of the 

pristine and surface-modified LSCF at operational 
thermodynamic conditions?

 What is the Cr and S deposition pathway on 
pristine and surface-modified LSCF slabs?

Computational investigation of Cr & S poisoning on realistic LSCF slabs

Franziska Hess and Bilge Yildiz, Polar or not polar? The interplay between reconstruction, Sr 
enrichment, and reduction at the La0.75Sr0.25MnO3 (001) surface, Phys. Rev. Materials, 2020

La Sr Co        Fe O Cr S



Grand Canonical Monte Carlo with Density Functional Theory for 
resolving LSCF surface reconstructions

16

start

goal

P. Wang and T. P. Senftle, AIChE Journal, 2021
V. Somjit and B. Yildiz, ACS Appl. Mater. Interfaces, 2022

 Given the vast LSCF surface configuration space involved, we 
need an automated search for the minimum energy structure

 Grand canonical Monte Carlo (GCMC) is a physically motivated 
scheme to identify the most stable surface oxide configuration 
at a given chemical potential and temperature.



Initial structures and GCMC modifications
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 Region 1: Full GCMC on both metal cations and oxygens
 Region 2: MC (exchange site position; exchange site cations positions; assume Sr and La still at A site, Co and Fe still 

at B site) on cations, GCMC on oxygens
 Region 3: Fix atoms in positions

La Sr Co        Fe O

Region 3

Region 1

Region 2



La Sr Co     Fe O

Current most stable structures

18

T = 800 K, PO2 = 10-4 atm Initial AO-terminated

Initial BO2-terminated



DFT calculation to find adsorption energies
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 First study the adsorption on pristine, non-polarized LSCF slabs
 Multiple adsorption configurations need to be studied

Adsorption energy: 
𝐸𝐸𝑎𝑎𝑎𝑎𝑎 = 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐷𝐷 − 𝐸𝐸𝑢𝑢𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐷𝐷 − 𝐸𝐸𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚𝑢𝑢𝑚𝑚𝑎𝑎

𝐷𝐷𝐷𝐷𝐷𝐷



CrO3 adsorption energies vs configurations
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 CrO3 adsorption energies are all negative for pristine LSCF slabs, whereas SO2 is slightly more positive 
 Adsorption energies decrease as the number of bonds formed from the adsorption increase
 BO2-terminated slabs have higher (yet still negative) adsorption energies

AO            BO2 AO            BO2 AO    BO2



Not 
stable

SO2 adsorption energies vs configurations
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 CrO3 adsorption energies are all negative for pristine LSCF slabs, whereas SO2 is slightly more positive 
 Adsorption energies decrease as the number of bonds formed from the adsorption increase
 BO2-terminated slabs have higher (yet still negative) adsorption energies

AO            BO2 AO            BO2 AO    BO2



O-Bader charge as an electrostatic correlator for CrO3 adsorption
 Why adsorption energies differ at different surface oxygen adsorption site?
 What characteristics of the surface oxygen correlate with the adsorption energies?

22

 O-Bader charge as the dominant electrostatic correlator. The adsorption energy increases as O-Bader charge 
increases. 

 M-Bader charge correlates less with the adsorption energies. 
 Surface O – Cr electrostatic interaction is an important correlator with CrO3 adsorption energies.



M d-center as an charge transfer correlator for CrO3 adsorption
 Why adsorption energies differ at different surface oxygen adsorption site?
 What characteristics of the surface oxygen correlate with the adsorption energies?

23

 O-p center correlates less with the adsorption energies. 
 M-d center as the dominant electrostatic correlator. The adsorption energy increases as M-d center 

decreases. 
 O (of CrO3) to M (of surface LSCF) charge transfer is an important correlator with CrO3 adsorption energies.



Computational summary – modeling on realistic LSCF surfaces to 
investigate Cr & S poisoning pathways

 Key takeaways:
1. Established modified GCMC to identify the 

most stable surface oxide configuration
2. CrO3 and SO2 adsorption energies are 

mostly negative on LSCF.
3. Electrostatic interaction and charge 

transfer are two dominant factors for CrO3
and SO2 adsorption.

 Future work:
1. Reaction path beyond adsorption in CrO3

and SO2 deposition using dynamic 
simulations.

2. Investigate the surface infiltrants stability 
and how they modify the surface structure 
and resistance against poisoning.

24

Not 
stable



Summary and future work

Till now:
 LSCF surface gets more stable with 

Hf/Zr, but how? Subsurface 
effects?

 AO-terminated surfaces more 
susceptible to CrO3 and SO2
adsorption.

Next Steps:
 Infiltrant stability and surface 

modification impacts with more 
samples/experiments, including in 
Cr and S environment.

 Cr and S poisoning mechanism at 
different surfaces, beyond 
adsorption.
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XPS post-mortem analysis – infiltration increases cathode side Sr content

 Unclear what the relationship is here
 No clear trend in terms of the surface/lattice ratio or the A/B ratio
 Checked that the analyses are correct and not artefacts
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Chronoamperometry analysis – Hf infiltration stabilizes current profile 
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EIS analysis – Rp vs time analysis at OCV
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EIS analysis under polarization – infiltration stabilizes LSCF cells

 EIS under polarization shows similar trend as at OCV – Hf infiltrated cell shows stable Rp

 However Zr infiltrated cells show a sizeable increase in Rp, indicating accelerated degradation
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XPS analysis – Zr infiltration seems more stable

 Interestingly, Sr 3d surface component (brown arrow) returns to same intensity as before 
infiltration, but Zr 3d (pink arrows) is still detectable even after cycling at 900°C.

 Inconsistency? 
33
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Cathode surface chemistry vs. cell polarization resistance
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? Less surface Sr results in lower Rp? 
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La Sr Co     Fe O

Current most stable structures

35

T = 800 K, PO2 = 10-4 atm Initial AO-terminated

Initial BO2-terminated

one extra oxygen vacancy on the surface, 
one oxygen vacancy on the 3rd subsurface

three extra oxygen on the surface
three oxygen vacancies on the surface



SOEC Testing with and without Uncoated Metal Interconnect

• In the absence of interconnect, SOECs have higher degradation than SOFCs.

• Unlike in SOFC, the main degradation peak for SOEC appears at 10+2–10+3 Hz, possibly (surface diffusion)

• Ohmic R does not increase; the change is in polarization R only

750oC at 1.3V
50%H2+50%H2O
Air

With IC

With IC

Without IC

Without IC
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Observations of SOFC vs SOEC in the presence of uncoated 

interconnect are confirmed in another set of experiment

• In this case a 3%H2O was used during SOFC operation

• Similar degradation rates are observed 

SOFC + uncoated IC
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Observations of SOFC vs SOEC in the presence of uncoated 

interconnect are confirmed in another set of experiment

• Again, SOFC has higher increase in ohmic R and in a low-frequency process

• Ohmic does not change in SOEC. Main degradation is at 10+2 – 10+3 Hz

SOEC + uncoated ICSOFC + uncoated IC
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