23rd Annual SOFC/SOEC Project Review Meeting

Reactivation of Chromia Poisoned SOFC Cathodes by Controlled Surface Acidity

Han Gil Seo, Anna Staerz, Clement Nicollet, Dino Klotz, Dennis Kim, James LeBeau, **Harry L. Tuller** Department of Materials Science and Engineering Massachusetts Institute of Technology (MIT)

DE-FOA-0001853 - Dr. Debalina Dasgupta

Day 1 – October 25, 2022, Pittsburgh

Massachusetts Institute of Technology

Surface Oxygen Exchange Kinetics in Mixed Conducting Oxides

Solid Oxide Fuel Cells (SOFCs) and Cr-poisoning

- Cr-containing interconnects
- Chemical degradation by Cr-impurities

To date, the main source of Cr-induced degradation remains controversial.

DOE Targets on SOFCs

Metric	Current	2020 Target	2025/2030 Target		
System Cost (100 kW- 1MW)	>\$12,000/kWe	\$6,000/kWe	\$900/kWe		
Single Cell Degradation	0.2 - 0.5% per 1,000 hrs				
Cell Manufacturing Approach	Batch	Semi- Continuous	Continuous		
System Degradation	1 – 1.5% per 1,000 hrs	0.5 - 1.0% per 1,000 hrs	<0.2% per 1,000 hrs		
Fuel Reformation	Primarily external natural gas conditioning/reforming	100% integrated natural gas reformation inside cell stack			
If not resolved, high degradation rates are potentially show					
stoppers for SOFC technology to be broadly accepted					
Configuration			Fully packaged		
Fuel	Natural gas	Natural gas Simulated syngas	Natural gas Coal-derived syngas		
Demonstration Scale	50 kWe - 200 kWe	200 kWe – 1 MWe	DG: MWe-class Utility-scale: 10 – 50 MWe		

Table: Dr. Shailesh Vora, "U.S. DOE Office of Fossil Energy Solid Oxide Fuel Cell (SOFC) Program", 2019 Fuel Cell Seminar and Exposition

Outline

Approach

Model Pr-doped CeO₂, $Pr_xCe_{1-x}O_{2-\delta}$ (PCO)

- Fluorite structure
- *High oxygen reduction reaction (ORR) activity*
- Mixed ionic and electronic conductivity in air
- Compatible with ceria-based solid electrolytes
- Free of Sr segregation in typical SOFC cathodes

Bishop et al., J. Mater. Res., **2012**, 27, 2009., Bishop et al., Phys. Chem. Chem. Phys., **2011**, 13, 10165-10173,

Possible to isolate cause of degradation by **extrinsic impurities**.

Massachusetts Institute of Technology

Conductivity Relaxation Measurements: Porous Bars

Monitoring bulk conductivity upon abrupt change in surrounding environment \rightarrow Measure D (chemical diffusion coefficient) and k (oxygen exchange coefficient)

Porous bar specimen

- ~1 µm grain size: much shorter than critical thickness (Surface reaction limited process $\rightarrow k$)
- Allow for liquid infiltration protocol
- Temperature: 250 °C 600 °C
- pO_2 step: 0.1 \leftrightarrow 0.2 atm

 $g(t) = \frac{\sigma(t) - \sigma_0}{\sigma_\infty - \sigma_0} = 1 - exp(-\frac{t}{\tau})$ $= 1 - exp\left(-\frac{k_{chem}}{k_{chem}}\frac{A}{V}t\right)$

au: time constant

 $\sigma(t)$, σ_0 , and σ_∞ : conductivity at time *t*,0, infinite A/V: geometric factor (surface area to volume ratio)

Massachusetts Institute of Technology

Identified Descriptor: Acidity of Surface Additives

Sequence of Conductivity Relaxation Measurements

Cr-Poisoning and Recovery by Serial Infiltration with Li

Massachusetts Institute of Technology

H. G. Seo, H.L. Tuller et al., Energy Environ. Sci., 2022, 15, 4038-4047 Patent Pending

Temperature Dependence of *k*_{chem}

$$k_{chem} = Aexp(-\frac{E_a}{k_bT})$$

A: Pre-exponential factor E_a: Activation energy

- Activation energy (E_a): 1.16 \pm 0.11 eV
- E_a : little dependence on infiltration
- A: largely controlled by acidity/basicity of additives

Controlling relative surface acidity can recover performance.

Beyond Cr-Poisoning, can it be Generalized to Other Acidic (Si vs Cr) /Basic (Ca vs Li) Additives?

Silica can be a more dangerous poison than chromia!

Massachusetts Institute of Technology

H. G. Seo, H.L. Tuller et al., Advanced Materials, In Revision 2022 Patent Pending

Si-Poisoning and Recovery by Basic Additives (Li,Ca)

As observed in Cr/Li-infiltrated sample, acidity/basicity has a significant impact on pre-exponential factor (A), not E_a .

Impact of Additives on Polarization Resistances

Approach

Microstructural Optimization of Symmetric Cells

Surface Additive-Induced ORR Activity

Non serial infiltration

Massachusetts Institute of Technology

Surface Additives-Induced ORR Activity

Similarly, acidity/basicity show little dependence on activation energy (E_a). Mixture of Cr(III) and Cr(VI) valence is detected.

Massachusetts Institute of Technology

Can Ca-Additives Reactivate Cr-Poisoned Surface?

Symmetric cells

Cr-additives significantly impeded rate of oxygen reduction, leading to increases in ASR. Remarkedly, degraded ASR can be recovered by addition of Ca-additives.

Massachusetts Institute of Technology

Impact of Additives on Power Outputs

Approach

Anode-Supported Fuel Cells with PCO Cathode with Additives

Demonstration of Cell Performance with Controlled Acidity

While ohmic resistances show little dependence on additives, polarization resistances at low frequency are significantly influenced by infiltration, as expected.

Demonstration of Cell Performance with Controlled Acidity

200

1.2

Measurement conditions

- *Humidified H*², *at anode* •
- Synthetic air at cathode
- *Temperature: 650-550°C*

Stability of Cell Performance with Controlled Acidity

Measurement conditions

- Temperature: 600°C
- Constant voltage: 0.75 V

No notable performance degradation observed following 100 h of operation.

Recall DOE Targets on SOFCs

Metric	Current	2020 Target	2025/2030 Target
System Cost (100 kW- 1MW)	>\$12,000/kWe	\$6,000/kWe	\$900/kWe
Single Cell Degradation	0.2 - 0.5% per 1,000 hrs		
Cell Manufacturing Approach	Batch	Semi- Continuous	Continuous
System Degradation	1 – 1.5% per 1,000 hrs	0.5 - 1.0% per 1,000 hrs	<0.2% per 1,000 hrs
Fuel Reformation	Primarily external natural gas conditioning/reforming	100% integrated natural gas reformation inside cell stack	
Durability	<2,000 hrs	5,000 hrs	5 years
Platform	Proof-of-Concept	Prototype/Pilot	DG: Commercial Utility-scale: Pilot
Configuration	Breadboard/Integrated systems	Fully packaged	Fully packaged
Fuel	Natural gas	Natural gas Simulated syngas	Natural gas Coal-derived syngas
Demonstration Scale	50 kWe - 200 kWe	200 kWe – 1 MWe	DG: MWe-class Utility-scale: 10 – 50 MWe

Table: Dr. Shailesh Vora, "U.S. DOE Office of Fossil Energy Solid Oxide Fuel Cell (SOFC) Program", 2019 Fuel Cell Seminar and Exposition

Given long-standing degradation problem with SOFCs, our findings support a **practical** solution for considerably extending device lifetimes!

Conclusions

- Demonstrated for first time ability to reactivate electrocatalytic surfaces by controlled acidity/basicity via

 conductivity relaxation, 2) electrochemical impedance, and 3) power output measurements.
 (Not only Cr-induced poisoning of SOFCs, but other potential poison sources such as Si detected, applicable to many applications)
- Confirmed cause of performance degradation related to electronic coupling between additives and host oxide.

Demonstrated with controlled acidity:

- Enhanced performance
- Extended life

"IMPACT": Accelerate ability to bring wide range of technologies to market!

Acknowledgement

- Title: "Robust highly durable solid oxide fuel cell cathodes Improved materials compatibility & self-regulating surface chemistry"
- Funding Opportunity Number: DE-FOA-0001853; Dr. Debalina Dasgupta
- Specific FOA area of interest: AOI 1 Solid Oxide Fuel Cells (SOFC) Core Technology Research: Cell and stack degradation
- Collaboration with Prof. James M. LeBeau, Prof. Bilge Yildiz, and Dr. Dennis S. Kim at MIT

Thank you for your attention!!

