Atomic Layer Deposition of Nickel Anchor to Prevent SOEC Degradation

<u>K. Hansen¹, O. Maksimov¹, J. M. Vohs², & H. Bhandari¹</u>

¹Radiation Monitoring Devices, Watertown, MA 02472 ²University of Pennsylvania, Philadelphia, PA 19104

Motivation

Solid oxide electrolysis cells (SOECs) are of interest for the direct electrochemical conversion of steam to hydrogen gas- a chemical fuel for sustainable closed-loop recycling of renewable energy^{1,2}

A Dynasil Company

✤ A significant barrier to commercial viability of SOECs is the degradation of hydrogen electrodes during electrolysis

- Electrolysis occurs where Yttria-stabilized Zirconia (YSZ) and Nickel (Ni) come in contact with steam, also known as Triple Phase Boundary (TPB)^{3,4}
- However, Ni migrates and agglomerates reducing the density of **TPBs**

YSZ

Ni

20

25

θ_A

Outlook: Develop robust electrode structure preventing Ni migration

Challenge: Binding Ni in complex microstructure while preserving TPB

YSZ

Innovative Solution

Conformal ALD coating of "Nickel anchor" compatible with SOEC manufacturing

Anchoring prevents Ni migration and agglomeration while minimizing risk of blocking TPB

Recent research suggests that applying Aluminum Titanate (ALT) in the Ni-YSZ composites can anchor the Ni catalyst and prevent agglomeration⁵

850°C $Al_2TiO_5 \rightarrow Al_2O_3 + TiO_2$ 1100°C $Al_2O_3 + NiO \rightarrow NiAl_2O_4$ 1300°C TiO₂ + $ZrO_2 \rightarrow ZrTiO_4$

✤ While this has been demonstrated via a solution infiltration method, there is a need for an alternate conformal coating technique for ALT with improved thickness precision, step coverage and process reliability for manufacturing

ALD Process Development

✤ Demonstrate Al₂O₃ growth at high and low temperatures with "incubation time" with nonlinear growth to achieve porous films by ALD

 \clubsuit SEM cross section analysis demonstrates uniform, conformal multilayer coating of TiO₂ and Al₂O₃ in deep silicon trench, AR 1:15

Atomic layer deposition (ALD) is a conformal coating technique driven by surface chemistry that relies on controlled vapor infiltration in porous substrates to grow thin films with a nm-scale thickness control⁶

Cell Fabrication and Testing

- ✤ YSZ-based button test cells fabricated via slurry tape casting
- ✤ Ni added via wet infiltration
- Preliminary results of adding TiO₂ to hydrogen electrode prior to Ni infiltration and effect of TiO_2 interlayer on cathode performance

Calcination anneal will activate anchor

Zreal (Ohm*cm^2)

Future Work

- Demonstrate the technical feasibility for the growth of the proposed ALT films via ALD in YSZ scaffolds provided for us by our collaborator, UPenn
- Evaluate and validate the performance of ALD-coated fuel electrode by performing representative electrolysis testing and evaluating the extent of nickel migration
- Evaluate and create a plan of process integration for manufacturing scale-up
 - > Design a dedicated ALD reactor design for realizing the ALT coating on the SOEC hydrogen electrodes
 - Collaborate with SOEC manufacturers in Phase II to bring this technology to their processes

ALD Al₂TiO₅

- Open to a direct and/or licensing business model
- RMD has a growing portfolio with ALD technologies
 - Microelectronic Semiconductor Coatings
 - Photonic Integrated Circuits Coatings
 - Gas Barrier Coatings
 - **RF Window Coatings**
 - X-ray and Neutron Supermirror Coatings

- 1. Hauch, A. et. al. Science. 370, (2020) 6513.
- 2. Mewafy, B., et. al. ACS Applied Energy Materials. 2, (2019) 7045-7055.
- 3. Zhang, X.; et. al. J. Ener. Chem. 26, (2017) 839.
- 4. Zhou, Z. et. al. Materials. 14, (2021) 3139.
- 5. Law, C. H.; Sofie, S. W. J. Elecrochem. Soc. 158, (2011) B1137.

Contact: Katherine Hansen, <u>khansen@rmdinc.com</u>

6. Grillo, Fabio, et al., Catalysis Today. 316, (2018) 51-61.

The authors wish to acknowledge support by DOE-SBIR grant DE-SC0022769 (6/27/2022-3/26/2023)

ALD Batch Processing, PICOSUN P-1000 https://www.azom.com/article.aspx?ArticleID=11424