Effect of Ce Doping in (Mn,Co)₃O₄-Based Spinel Coatings on the Performance of SOFC Interconnect Alloys

Tennessee Tech UNIVERSITY

Micah Midgett and Jiahong Zhu

Department Of Mechanical Engineering, Tennessee Technological University (TTU), Cookeville, TN

Che	mical ((wt.%)	Compo) & Coi	sition: respo	s of S nding	Some C g Spine	o-Mn Alloy Powd I Compositions
	Alloy	Со	Mn	Fe	Се	Spinel Composition
	Alloy 1	68.21	31.79	—	-	MnCo ₂ O ₄
	Alloy 2	64.72	31.80	3.23	—	$MnCo_{1.9}Fe_{0.1}O_4$
	Alloy 3	64.72	31.77	3.23	0.41	$MnCo_{1.895}Fe_{0.1}Ce_{0.005}O_4$
•	Spinel	XRD	Analysis	•	Co+MnO ₂	
ensity	l	ļ	l		Alloy 1	
Inte	l		/		Alloy 2	······································
	l		\	/	Alloy 3	20 μm
20	30	40	50 POD(°)	60	70 80	Cross-sectional View of Converted Alloy-1 Lave

- The coating samples were exposed at 850°C to accelerate the oxidation testing.
- **Ce-doped MCO coated samples had** much lower ASR degradation rates than **Ce-free coating samples despite starting** with a higher ASR
- The ASRs were projected assuming a linear oxidation beyond 2000 hours.
- The projected ASR of Ce-doped coating samples after 40,000-h was below the target value of 100 m Ω^* cm² despite the accelerated oxidation temperature of 850°C being employed.

The ASR and Degradation Rate of the samples after 2000-h

	Ce-Free 1	Ce-Free 2	Ce-
R _f (mΩ∙cm²)	22.15	21.95	
$DR_f (\mu \Omega \cdot cm^2/h)$	4.71	3.75	

Cross-Sectional View of the Coatings after Long-Term Testing

- A thicker and more discrete chromia layer was observed on all **Ce-free coating samples.**
- **Ce-doped coating samples exhibited a reduced chromia scale**
- The Ce doping also improved interfacial bonding.

Comparison Between Ce-Doped and Ce-Free samples at the end of 2000-h and after a projected 40,000-h

Averaged	Non-Doped	Ce-Doped	%Reduction
Cr Scale Size (µm)	4.73	21.95	26.9%
R _f (mΩ·cm²)	22.05	16.93	23.2%
DR _f (μΩ∙cm²/h)	4.33	1.86	57.0%
R _{f_projected} (mΩ·cm²)	186.6	87.6	52.8%
R _{f_projected} (mΩ·cm²)	186.6	87.6	52.8%

Cr Blocking Ability of Ce-Doped MCO Coatings

- Cr volatilization testing was performed at 800°C over 500-h using the denuder method.
- The Ce-doped coatings were proved to be very effective at blocking Cr evaporation compared to bare Crofer 22.

Comparison of Coated and Uncoated Cr Evaporation of Crofer 22 Bare Crofer – Cr Evaporation F

Coated Crofer – Cr Evaporation

% Reduction in Cr Evaporation Rat

Schematic of the Cr Collection Setup

Research Supposed by U. S. Department of Energy - National Energy Technology Laboratory, Solid Oxide Fuel Cell Prototype System Testing and Core Technology Development Program, Award No. DE-FE0031187; Project Manager: Dr. Patcharin Burke.

thickness and a more developed (Mn,Co,Cr)₃O₄ reaction layer.

ate (kg/m ²	²·s)	9.05e-10	
Rate(kg/n	n²∙s)	6.51e-11	
e with the	Coating	92.8 %	
5 Coated, Reaction F	23.85" ilter Coated Area	Uncoated Collection Filter	

Concluding Remarks

- Ce doping in the MCO spinel layer improved all aspects of the performance of the spinel coating/contact layer formed via the EARS.
- The cell with the Ce-doped alloy (Alloy-3) derived contact had the best overall ASR performance, likely as a result of the Ce dopant modifying the Cr₂O₃ scale growth on the interconnect alloy.
- The presence of Ce in the MCO coating increased the initial ASR, which was more than compensated for by the significant reduction in ASR degradation rate.
- The Ce-doped MCO coating was very effective in reducing the Cr evaporation from the ferritic interconnect alloys.
- Our industrial partner is currently performing in-stack testing to verify the performance of the new coating/contact.
- Further cost reductions and process optimizations are being explored.

