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Relative Changes to Inactive 
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Pore size 
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Connected Ni 
%

Connected Ni 
diameter (𝝁m)

SOEC Active Layer FE 3.49 -0.14 -8.11 5.35
RSOC Active Layer FE 5.55 6.79 -2.53 2.02

SOEC Supporting Layer FE 4.68 2.98 -1.11 -0.41

RSOC Supporting Layer FE 2.90 -3.25 0.87 0.96

• Cells were tested in either electrolysis (SOEC) or 
reversible (RSOC) mode for 500hrs

• AC impedance spectroscopy and V-j scans were used to 
characterize the cell performance as a function of time

P1: gas diffusion-limited process
P2: gas diffusion-limited process in FE
P3: O2- diffusion in FE3

P4: TPB reaction resistance4

P5: ohmic resistance
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• SOEC mode shows significant 
increase in O2- diffusion resistance in 
FE, suggesting a loss in active sites 
forcing diffusion further into the FE

• RSOC mode mitigates TPB loss and 
improves gas diffusion-limited losses

• Significant microstructure changes only occur in the hydrogen electrode over 500h—the 
oxygen electrode is stable at testing conditions

• Microstructure evolution in the fuel electrode 
(FE) is quantified by comparing 
electrochemically inactive and active areas

• Low KeV imaging is used to create contrast in 
connected Ni particles2

• Loss and coarsening of connected Ni grains is most evident with SOEC operation
• RSOC operation mitigates percolated Ni loss and coarsening, but increases porosity and 

pore size

• Reversible solid oxide fuel cells (RSOCs) are a promising 
technology for energy storage and production1

• In electrolysis mode, RSOCs store energy by splitting 
water to generate hydrogen

• To produce energy, they operate in fuel cell mode to
convert the chemical energy of hydrogen to electricity

• Mitigating long-term degradation in RSOCs is critically 
important to expanding their viability 

• Goal: quantify the relationship between performance 
degradation and microstructural evolution

• Continuous operation in SOEC mode results in significant 
degradation shown by DRT to be linked to the fuel 
electrode

• Loss of Ni connectivity in the FE active layer is identified
to be a major cause of performance degradation during 
electrolysis

• Performance degradation was limited during RSOC 
operation

• Microstructural analysis shows that mode switching 
mitigates percolated Ni loss in the fuel electrode active 
layer compared to SOEC operation

• Excellent stability was observed in the oxygen electrode 
in both RSOC and SOEC modes of operation

• Minimal degradation is evident in the fuel electrode
supporting layer, but is expected to occur over longer 
timescales

• The NNO|NNO-NDC50|GDC10|8YSZ|Ni-YSZ cell 
architecture shows significant promise as a candidate 
for energy storage applications

• Clear microstructure/performance relationships have 
been established for a limited-duration test
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• 8YSZ, GDC10, NNO/NDC50 and NNO were screen 
printed onto commercially-purchased substrates and 
sintered
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