ATIONAL TECHNOLOGY ABORATORY

Ab initio study of diffusivity and ionic conductivity of $Ln_2NiO_{4+\delta}(Ln=La, Nd, Pr)$ mixed conductor Songge Yang¹, Guangchen Liu¹, Yueh-Lin Lee² Yu Zhong¹

¹Department of Mechanical and Material Engineering, Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA, 01609, USA

²National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, Pennsylvania 15236-0940, USA

Objective of the work

Action items:

- Calculations of the Vacancy formation energy
- Calculations of the thermal expansion coefficient
- Extrapolation of the temperature-dependent energy barrier
- Prediction of the diffusion coefficient and ionic conductivity ($Ln_2NiO_{4+\delta}$, $\delta=0.125$)

Equation of state of Ln₂NiO₄ (Ln=La, Nd, Pr)

Temperature-dependent properties-Ln₂NiO_{4+δ}

Oxygen migration path $(Ln_2NiO_{4+\delta})$

Volume thermal expansion of Ln_2NiO_4 (Ln=La, Nd, Pr)

Comparison with exp:

Computational details

Ab initio calculations:

- Vienna ab initio simulation package (VASP)
- Generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) exchange-
- correlation functional
- □ Monkhorst-Pack k-point meshes with density not less than 5000 pra (per-reciprocal-atom))
- The DFT+U approach was adopted in the present work
 - ◆ d-element Ni: U=6 eV (adopted the value from Staykov et al.)
- ◆ f-element Nd: U=6 eV (fitted the EDOS result produced by HSE06 function), Pr=3 eV
 - (adopted the value from Staykov et al.)

Ref. Staykov, A., Nguyen, T., Akbay, T. and Ishihara, T., 2022. Oxygen Reduction Reaction and Electronic Properties of LnO-Terminated Surfaces of Pr2NiO4 and La2NiO4. *The Journal* of Physical Chemistry C, 126(17), pp.7390-7399.

Selected diffusion paths

Comparison between different A-site elements

Conclusions

- The vacancy diffusion might not play a dominant role for the Ln2NiO4 materials due to the high vacancy formation energy.
- After the investigation of different possible pathways, it can be concluded that the interstitial O^{2-} of the $Ln_2NiO_{4+\delta}$ should
- migrate parallel to the ab plane instead of the c direction, as the energy barrier along the ab plane is lower.
- The ranking of the diffusion coefficient and ionic conductivity of $Ln2NiO_{4+\delta}$, from the highest to the lowest, is $Pr2NiO_{4+\delta}$,

Acknowledgments

• Thanks for the funding support from Department of Energy-National Energy Technology Laboratory(DOE-NETL): DE-

FE0031972

• Thanks for the help from the program manager: Sarah Michalik

• Thanks for the collaboration with Dr. Yueh-lin Lee