SOLID OXIDE FUEL CELL TEST CENTER (SOFCto) DEVELOPMENT AND DEMONSTRATION

GOAL
BUILD SOFC DEVELOPMENT & DEMONSTRATION TEST CENTER (SOFCto) to help NETL achieve its mid-2020s target of 10MWp SOFC demonstration with coal-derived syngas and carbon capture, utilization, and storage.

OBJECTIVES
- Design SOFC development and demonstration test center with the tools needed to advance system- and component-level SOFC performance.
- Build and validate SOFC test facility.
- Perform component- and system-level SOFC testing using a variety of fuels.

FUEL PRODUCTION, CLEANUP, AND STORAGE TECHNOLOGY
EERC SOFC test stands integrated with syngas production, cleanup, storage, and fuel delivery system.

OBJECTIVES
Multicell Test Station
< 5 ppbv
Concentration
Industrial Gasifier
25 ppbv
0.4%
Fiaxell Test Station
Multicell Test Station
< 10
1.7%
1900 ppbv
< 1000 ppbv
25 ppbv
XRF
< 0.5 ppbv
Concentration*
Fuel delivery
Bypass
Planar or tubular
Planar
Single cell or short stack
< 1 ppbv
150
Any fuel from gas storage
Additional gas cleanup and acid
0.0%
Bypass
Planar
< 0.5 ppbv
N/A
~500 ppbv
Fiaxell Test Station
0.9%
Electronic Load & EIS

GOAL
CENTER (SOFC)
SOLID OXIDE FUEL CELL TEST
FUEL DELIVERY SYSTEM
•
•
•
FUEL OPTIONS:
•
•
ALL GASIFIERS
• Wide range of feedstocks: coal, biomass, other solid or liquid feedstocks
• Bench-scale warm-gas cleanup train
• Gas-sweetening absorption system
 - Additional gas cleanup and acid gas removal
 - Produce up to 120 sofh of syngas
 - Syngas storage and delivery system
• Wide range of H₂/CO ratio
• Low-contaminant level

EERC GASIFICATION CAPABILITY | THREE GASIFIERS

EERC GASIFICATION CAPABILITY | CARBON CAPTURE

EERC GASIFICATION CAPABILITY | FUEL STORAGE
STORAGE TANK CAPACITY | 20,900 scf at 2600 psi

FUEL OPTIONS:
- Syngas from EERC gasifier (coal, biomass, waste, blend)
- Natural gas (desulfurized)
- Bottled gas (single or blends of H₂, CO, CH₄, CO₂, N₂, other)
- Added contaminants

FUEL DELIVERY SYSTEM

SOFCE DEVELOPMENT AND DEMONSTRATION TEST CENTER AT THE EERC

COAL-DERIVED SYNGAS QUALITY

EERC Gas Component
Carbon Monoxide
49.5%
Carbon Dioxide
0.7%
Hydrogen
8.6%
Argon
0.4%
Methane
0.08%
Dissolved Oxygen
3.2%
Carbon Dioxide
1.7%

MATERIALS ANALYTICAL CAPABILITIES

© 2022 University of North Dakota Energy & Environmental Research Center (EERC) and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.
Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not
usefulness of any information, apparatus, product, or process disclosed, or presents that its use would not infringe privately owned rights.
SOFCE DEVELOPMENT AND DEMONSTRATION TEST CENTER AT THE EERC
1 kW Stack Test Station
Multicell Test Station
Power Test Station
Electronic Load & EIS

TEST CONDITIONS
- 750°C
- Constant current load at 230 mA/cm²
- 75% fuel utilization
- Methane reformer

CONTAINTABLE LEVEL | EERC Syngas vs. Industrial Syngas
Industrial Gasifier
Carbon Monoxide
< 100 ppm
Argon
< 10 ppm
Methane
< 10 ppm
Carbon Dioxide
< 100 ppm
Dissolved Oxygen
< 10 ppm

MATERIALS ANALYTICAL CAPABILITIES

Jivan Thukre | Principal Engineer | jthukre@undeerc.org | 701.777.5567
John A. Brumm | Michael E. Collins | Alireza Karimaghalho | Chad A. Wocken* | Energy & Environmental Research Center (EERC)
701.777.5600 | www.undeerc.org

ECH - UNIVERSITY OF NORTH DAKOTA

* Corresponding Author: cwocken@undeerc.org, 701.777.5273

UNDEERC.ORG/RESEARCH