
Electrochemical Characterization Suggests Stabilized Cells with Surface Infiltration:

• Infiltrated cells - significant stabilization of Rp. Monotonic increase for as-prepared cells.

• As prepared cells - steady decrease in I vs. t. Infiltrated cells - stable current (Hf infil) or stable initial 

current that later degrades sharply (Zr infil).
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Experimental Results
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Comparison of surface chemistry and polarization resistance:

• Sr surface/lattice and A/B ratios show no clear trend – results not consistent with infiltration reducing Sr 

segregation.

• Rp values at end of experiment – again no clear trend.
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Cathode XPS analysis
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EIS at OCV

Temperature dependence of surface infiltrated cations:

• Hf 4d signal – evidence of Hf dissolution away from surface at T > 600°C

• Surface Sr 3d – nearly constant up to 700°C, large increase after 800°C cycling.
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Typical Hf loading: 

4.5-7.5% of 

cations

Sr 3d

Grand Canonical Monte Carlo (GCMC) + Density Functional Theory (DFT) to 

Construct Realistic LSCF Surface Reconstruction

Region 1: Full GCMC on both metal cations and oxygens

Region 2: MC (exchange site position; exchange site cations positions; assume Sr and La still at A 

site, Co and Fe still at B site) on cations, GCMC on oxygens

Region 3: Fix atoms in positions
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CrO3 and SO2 Adsorption Energies on Pristine LSCF slabs
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Strontium Segregation in SOFC Cathodes:

• Study focuses on state-of-the-art SOEC cathode material 

(La0.6Sr0.4)0.95Co0.2Fe0.8O3-δ (LSCF) 

• LSCF exhibits Sr segregation from cathode lattice to 

cathode surface 

• Segregated SrO then reacts with Cr and S to form inactive 

surface phases

Predominant Sr Segregation Mechanism:

• Under cathodic polarization, an electrostatic attraction 

mechanism drives Sr segregation

• Electrostatic driver: attraction of negatively charged A-site 

dopant to surface enriched with positively charged oxygen 

vacancies

Surface Composition Control Methods:

Objective:
Minimize Sr 

segregation and 

improve cell 

stability by 

infiltration of 

more oxidizable 

cations on state-

of-the-art LSCF 

electrodes.

• CrO3 and SO2 adsorption energies 

show the same trend with 

configurations. The surface oxygen 

sublattices are the most 

preferential deposition sites. 

• Adsorption energies decrease as 

the number of bonds formed from 

the adsorption increase

• BO2-terminated slabs have higher 

(yet still negative) adsorption 

energies.

• O-Bader charge as the dominant electrostatic correlator. The adsorption energy increases as O-Bader charge increases. 

• Surface O – Cr electrostatic interaction is an important correlator with CrO3 adsorption energies.

• M-d center as the dominant electrostatic correlator. The adsorption energy increases as M-d center decreases. 

• M (of surface LSCF) to O (of CrO3) charge transfer is an important correlator with CrO3 adsorption energies.


