

Development of Novel 3D Cell Structure and Manufacturing Processes for Highly Efficient, Durable and Redox Resistant Solid Oxide Electrolysis Cells DE-FE0032107

Sanghoon Lee¹, Haichen Lin¹, Sam Ghosh², Bruce Kahn², Arkady Malakhov², Denis Cormier³, Bobby Kovach³, David Trauernicht³, Edgar Lara-Curzio⁴, Nguyen Q. Minh^{1,*}

23rd Annual Solid Oxide Fuel Cell Program Project Review Meeting Oct 25 – 27, 2022

ENERGY TECHNOLOGY

Overview

Problems and Opportunities in SOEC Hydrogen Electrode Development

○ **Problems**

- ✓ Redox instability of Ni-YSZ
- ✓ Nickel particle agglomeration/depletion

Opportunities

- ✓ Redox-resistant hydrogen electrode <u>support layer</u>
- \checkmark High-performance and durable hydrogen electrode <u>active layer</u>

Fig. 1 Proposed Cell Design

Develop and demonstrate highly efficient, durable, and redox-resistant SOECs with a focus on:

• Cell Design

✓ Two layers of hydrogen electrode - a 3D hydrogen electrode support layer and an exsolved perovskite hydrogen electrode active layer

Cell Manufacture

✓ Incorporating advanced inkjet printing and photonic sintering for the fabrication of the cell configuration

Fig. 2 Reduction of Air-Sintered Hydrogen Electrode Support

✓ Photonic sintering

- Heating of thin layers of material by <1 ms flashes of broad-spectrum light
- 30 kJ/cm² energy
- Projected reduction of sintering cycle from hours/days to seconds/minutes
- Projected reduction in sintering process energy consumption by >90%

Fig. 3 Photonic Sintering

○ **Motivation ○ Feature**

Ink formulation, printing, and firing **○ Ink Formulation**

¹ University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093 ² RocCera, LLC, 771 Elmgrove Rd, Rochester, NY 14624 ³ Rochester Institute of Technology, One Lomb Memorial Dr, Rochester, NY 14623 ⁴ Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830

3D Hydrogen Electrode Support by additive manufacturing

B 3D Hydrogen Electrode Support Layer

✓ 3D hydrogen electrode support for redox resistance

- ✓ 3D networks of tetragonal zirconia (TZ) and Ni with controlled geometry and connectivity \checkmark Printing by ejection of drops of ceramic powder
- suspended in a liquid slurry
- Optimize We and Re for inkjet printability **OStructured Dual Ceramic Inkjet Printing** ✓ Profilometry of printed structures to show height ✓ Optimization of firing conditions

Fig. 5 Weight of the binders by temperature

Too Viscous

Fig. 4 Inkjet Printing Process for

Fabricating 3D Hydrogen

Electrode Support Layer and

Reduction of Air-Sintered

Hydrogen Electrode Support

10 15 20 25 30 35 40 45 50 55 60

—H3 Drv

Fig. 7 3D-Printing strategy for the checkerboard pattern, and image and surface profilometry of the 3D-printed layer H3 Wet

Reduced @ 600°C, H₂

Re-oxidized @ 600°C, air

JC San Diego

RocCera

COAK RIDGE

Exsolved Perovskite Hydrogen Electrode Active Layer

Ni-substituted perovskite and GDC

 \checkmark When exposed to a reducing environment, Ni in the perovskite will exsolve to form fine particles embedded in the oxide skeleton.

✓ High performance, enhanced stability, and redox resistance

Fig. 9 Embedded Structure Formed from **Exsolution of Nickel Particle**

Fig. 13 FESEM Images of Reduced and Reoxidized LSCFN