Overview

- **Problems and Opportunities in SOEC Hydrogen Electrode Development**
 - **Problems**
 - Redox instability of Ni-YSZ
 - Nickel particle agglomeration/depletion
 - **Opportunities**
 - Redox-resistant hydrogen electrode support layer
 - High-performance and durable hydrogen electrode active layer

- **Develop and demonstrate highly efficient, durable, and redox-resistant SOECs with a focus on:**
 - **Cell Design**
 - Two layers of hydrogen electrode - a 3D hydrogen electrode support layer and an exsolved perovskite hydrogen electrode active layer
 - **Cell Manufacture**
 - Incorporating advanced inkjet printing and photonic sintering for the fabrication of the cell configuration

![Fig. 1 Proposed Cell Design](image1)

- **3D Hydrogen Electrode Support by additive manufacturing**
 - **3D Hydrogen Electrode Support Layer**
 - **Motivation**
 - 3D hydrogen electrode support for redox resistance
 - **Feature**
 - 3D networks of tetragonal zirconia (TZ) and Ni with controlled geometry and connectivity
 - **Printing**
 - Printing by ejection of drops of ceramic powder suspended in a liquid slurry
 - **Ink formulation, printing, and firing**
 - **Ink formulation**
 - Optimize We and Re for inkjet printability
 - **Structured Dual Ceramic Inkjet Printing**
 - Profilometry of printed structures to show height
 - Optimization of firing conditions

![Fig. 2 Reduction of Air-Sintered Hydrogen Electrode Support](image2)

- **3D Hydrogen Electrode Support by additive manufacturing**
 - **Exsolved Perovskite Hydrogen Electrode Active Layer**
 - **Ni-substituted perovskite and GDC**
 - When exposed to a reducing environment, Ni in the perovskite will exsolve to form fine particles embedded in the oxide skeleton.
 - High performance, enhanced stability, and redox resistance

![Fig. 3 Photonic Sintering](image3)

- **3D Hydrogen Electrode Support by additive manufacturing**
 - **3D Hydrogen Electrode Support by additive manufacturing**
 - **Inkjet Printing Process for Fabricating 3D Hydrogen Electrode Support Layer and Reduction of Air-Sintered Hydrogen Electrode Support**

![Fig. 4 Inkjet Printing Process for Fabricating 3D Hydrogen Electrode Support Layer and Reduction of Air-Sintered Hydrogen Electrode Support](image4)

- **3D Hydrogen Electrode Support by additive manufacturing**
 - **Optimization of firing conditions**
 - **Reynolds number vs. Weber number**
 - Where:
 - Re = Reynolds number
 - We = Weber number
 - μ = Viscosity (Pa·s)
 - ρ = Density (g/ml)
 - ν = Viscosity (cP)
 - d = Nozzle diameter (μm)

![Fig. 5 Weight of the binders by temperature](image5)

- **3D Hydrogen Electrode Support by additive manufacturing**
 - **Ink formulation, printing, and firing**
 - **Metal ion salts**
 - Sol synthesis
 - **Wet mixing**
 - 800°C 2nd Calcination
 - 1150°C 2nd Calcination

![Fig. 6 Reynolds number vs. Weber number of the selected inks](image6)

- **3D Hydrogen Electrode Support by additive manufacturing**
 - **Structured Dual Ceramic Inkjet Printing**
 - Profilometry of printed structures to show height
 - Optimization of firing conditions

![Fig. 7 3D-Printing strategy for the checkerboard pattern, and image and surface profilometry of the 3D-printed layer](image7)

- **3D Hydrogen Electrode Support by additive manufacturing**
 - **Embedded Structure Formed from Exsolution of Nickel Particle**
 - **Fig. 9 Embedded Structure Formed From Exsolution of Nickel Particle**

![Fig. 8 Pictures and surface profilometry of the 3D-printed Ni-YSZ support layers before and after firing](image8)

- **3D Hydrogen Electrode Support by additive manufacturing**
 - **Problems**
 - Heating of thin layers of material by <1 ms flashes of broad-spectrum light
 - 30 kJ/cm² energy
 - Projected reduction of sintering cycle from hours/days to seconds/minutes
 - Projected reduction in sintering process energy consumption by >90%

![Fig. 10 Synthesis Process](image10)

- **3D Hydrogen Electrode Support by additive manufacturing**
 - **Development**
 - High performance, enhanced stability, and redox resistance

![Fig. 11 XRD Patterns of Reduced LSCFN at different temperature with 50% H₂-50% H₂O](image11)

- **3D Hydrogen Electrode Support by additive manufacturing**
 - **Fig. 12 XRD Patterns of As-synthesized, Reduced, and Reoxidized LSCFN**

![Fig. 13 FESEM Images of Reduced and Reoxidized LSCFN](image12)