Surface Energies of LaMnO₃ High-Index Surfaces Obtained from Density-Functional Theory

Yves A. Mantz¹ and Yueh-Lin Lee²,³

¹US Department of Energy, National Energy Technology Laboratory, Morgantown WV; ²US Department of Energy, National Energy Technology Laboratory, Pittsburgh PA; ³NETL Support Contractor, Pittsburgh PA

Introduction

- Study of LaMnO₃ (LM) surfaces is important
 - In certain solid oxide fuel cells, the reduction of oxygen on Sr-doped LM is critical to cell performance.
 - To understand the reduction process better, the key Sr-doped LM surfaces present under cell operating conditions need to be identified.
 - To identify these surfaces, the energetics of cubic LM surfaces are appropriate to examine.

- In previous theoretical studies, the surface energies of the cubic LM low-index surfaces, (001), (011), and (111), were determined (see right).
- Building upon this work, the first six cubic LM low-index surfaces are examined here for the first time.

Computational Approach

- Computations are performed at the level of spin-unrestricted density-functional theory (PW91 functional, 600 eV cutoff, PAW pseudopotentials) using the VASP software package, as in ref 4.
- The (210), (211), (221), (310), (311), (320) surfaces are examined.
- Each surface is described by one of the following sequences of layers. Thus, two surface terminations of a surface are possible:
 - LaO–MnO₂–LaO–MnO₂–...
 - LaMnO₃–O₂–LaMnO₃–O₂–...
 - LaO₃–Mn–LaO₂–Mn–...

- The surfaces are modeled using asymmetric surface models (having different surface terminations on the top and bottom of the slab). Note, dipole-dipole coupling between periodic images is weak.
- Unrelaxed and relaxed surface energies E_u and E_r are computed versus surface model thickness using the following equation:

$$ E_s = \frac{1}{2A} (E_{slab} - nE_{bulk}) $$

E_{slab}: energy of unrelaxed or relaxed slab
E_{bulk}: bulk of a surface is the difference of bulk values obtained for the relaxed and unrelaxed models of a surface.

E_u is determined using a linear-fit procedure, to obtain a flat E_u curve at a model thickness $N ≥ N^*$ layers, as illustrated below for the E_u curve of the (211) surface, where $N^* = 10$.

- Twelve different E_{bulk} values are determined, one for the unrelaxed and one for the relaxed surface models of each surface examined in this work.

Results for (210), (211), (221), and (320) Surfaces

- The E_u of the (210), (211), (221), and (320) surfaces are 0.95, 1.22, 1.23, and 1.06 eV/Å², respectively, more than the E_u of (001), 0.83 eV/Å², but less than the E_u of (011) and (111), 1.31 and 1.34 eV/Å², respectively (given in ref 4).
- The E_u of the surfaces are significantly larger than the E_u of the (311) surfaces.
- Helping to explain the relatively small E_r, the surface terminations of the surfaces are seen to exhibit a rotational relaxation of the MnO₃ or oxygen octahedra (e.g., the red circled regions at right), leading to distorted surfaces.
- This relaxation is believed to occur because a different phase of LM is stable at the temperature of the computations, 0 K, and it is seen to exhibit a rotational relaxation.

Results for (310) and (311) Surfaces

- The E_r of the (310) and (311) surfaces are seen to exhibit an unusual triangular form, with minima at 4x + 2 = 20, 24, 28, 32, and 36 layers and maxima at 4x + 2 = 22, 26, 30, and 34 layers. This form needs to be explained.

Results for (310) and (311) Surfaces (Cndtd)

- The triangular form is due to different structures of the surface models with 4x and 4x + 2 layers, seen by comparing red circled or boxed regions at right.
- The different structures are explained by a structural transformation or phase change in the surface models of the surfaces, as shown at right. If a phase change is seen, then different structures are possible.

Conclusions

- The (210), (211), (221), and (320) surfaces are relatively stable. Helping to explain this result, the surface terminations of the surfaces are seen to exhibit a rotational relaxation of the oxygen octahedra.
- This rotational relaxation is the first example of a rotational relaxation seen at the surfaces of a cubic perovskite oxide not undergoing a phase change to an antiferrodistortive phase.
- The relaxed (310) and (311) surfaces are difficult to characterize due to a phase change in the surface models of the surfaces.
- This result indicates a phase change in the surface models of other surfaces may occur.
- Steps to model these surfaces are suggested (given in ref 5).

Acknowledgment

This work was funded by the SOFC Program at the National Energy Technology Laboratory.

References and Disclaimer

1. RA Evarestov et al, Phys Rev B 72, 214411 (2005)
4. YA Mantz, Surf Sci 695, 121500 (2020)
5. YA Mantz and YL Lee, submitted to J Phys Chem C
6. https://wasp.at

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.