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Introduction

6. Electrochemical performance of BHCYb172-based single cells

1. Conductivity and ionic transference number

Summary
• Developed a Yb-doped proton conductor with enhanced

stability and minimal reaction towards NiO

• Conductivity, stability, and NiO compatibility are all closely

correlated with the acceptor dopant size

• Demonstrated high-performance solid oxide cells based on

novel BHCYb172 proton conducting electrolyte
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• Reversible solid oxide cells based on proton conductors have

potential to be the most efficient and low-cost option for energy

storage and power generation, holding promise as an enabler

for the implementation of intermittent renewable energy

technologies and the widespread utilization of hydrogen.

• Acceptor-doped barium cerate-based proton conductors have

the highest ionic conductivity at intermediate temperatures.

• While highly conductive, some doped barium cerates are

unstable against high concentrations of H2O/CO2. It’s

necessary to investigate the effect of more dopants on

enhancing chemical stability while retaining high conductivity.

5. Impact of NiO compatibility on cell performance

4. Compatibility with Ni-based electrodes
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Results and Discussion

2. Chemical stability against H2O and CO2

3. DFT-based calculations

Figure 1. a) Conductivity of BHCR172 (R = Yb, Er, Y, Gd, Sm) and

BZCYYb1711 as a function of temperature. b) Conductivity of BHCR172 at 600

°C as a function of ionic radius of R3+. c) Ionic transference number measured

under cell operation conditions.

Figure 2. a) XRD patterns of BHCR172 (R = Yb, Er, Y) pellets after exposure to

30% CO2 and 3% H2O in Ar at 500 °C for 300 h. b) Intensity ratio between the

BaCO3 and perovskite (220) peaks of BHCR172 as a function of ionic radius of

R3+. Conductivity of BHCYb172, BHCY172, and BZCYYb1711 over 500 h in c)

30% CO2 and 3% H2O, and d) 30% H2O in Ar at 500 °C.

Figure 3. a) The H2O reaction schematic between BHCYb172 and H2O. b)

Gibbs free energy curves for the reaction of H2O with BHCR172 (R=Yb, Er, Y).

c) The CO2 (top) and H2O (bottom) adsorption behavior for AO-terminated

BHCR172 (001) surfaces. d) CO2 and H2O Eads as a function of the ionic radius

of R3+.

Figure 4. a) Magnified view of XRD patterns of BHCR172 (R = Yb, Er, Y, Gd,

Sm) after firing with NiO at 1400 °C for 5 h. b) Intensity ratio between the

BaR2NiO5 and perovskite (220) peaks of BHCR172 (R = Er, Y, Gd, Sm) as a

function of the ionic radius of R3+. c) SEM image of the electrolyte surface of a

Ni-BHCYb/BHCYb172 half cell with an electrolyte thickness of 10 µm after firing

at 1400 °C for 5 h. d-f) SEM image and EDS mapping of the electrolyte surface

of a Ni-BHCY/BHCY172 half cell with an electrolyte thickness of 10 µm after

firing at 1400 °C for 5 h.

Figure 5. Comparison of a) peak power density, b) ohmic and polarization

resistance, and c) ionic transference number between BHCYb172- and

BHCY172-based single cells.

Figure 6. a) Cross-sectional SEM image of the Ni-

BHCYb172/BHCYb172/BCFN single cell. b) Typical I-V-P curves measured in

the fuel cell mode at 500-650 oC with H2 (3% H2O) in the fuel electrode and

ambient air in the air electrode. c) Typical I-V curves measured in the

electrolysis mode at 500-650 oC with H2 (3% H2O) in the fuel electrode and air

(30% H2O) in the air electrode. d) Long-term stability in the fuel cell mode with

H2 (3% H2O) in the fuel electrode and ambient air in the air electrode at 0.5 A

cm-2 and 600 oC. e) Long-term stability in the electrolysis mode with H2 (3%

H2O) in the fuel electrode and air (3% H2O) in the air electrode at -0.5 A cm-2

and 500 oC. f) Reversible operation of the cell: the cell voltage as a function of

time when the operating mode was switched between the fuel cell and

electrolysis modes (2-12 h for each mode) at a current density of ±0.5 A cm-2

at 650 oC.


