

Introduction

- Reversible solid oxide cells based on proton conductors have potential to be the most efficient and low-cost option for energy storage and power generation, holding promise as an enabler for the implementation of intermittent renewable energy technologies and the widespread utilization of hydrogen.
- Acceptor-doped barium cerate-based proton conductors have the highest ionic conductivity at intermediate temperatures.
- While highly conductive, some doped barium cerates are unstable against high concentrations of H_2O/CO_2 . It's necessary to investigate the effect of more dopants on enhancing chemical stability while retaining high conductivity.

Results and Discussion

1. Conductivity and ionic transference number

Figure 1. a) Conductivity of BHCR172 (R = Yb, Er, Y, Gd, Sm) and BZCYYb1711 as a function of temperature. b) Conductivity of BHCR172 at 600 °C as a function of ionic radius of R³⁺. c) Ionic transference number measured under cell operation conditions.

2. Chemical stability against H₂O and CO₂

Figure 2. a) XRD patterns of BHCR172 (R = Yb, Er, Y) pellets after exposure to 30% CO₂ and 3% H₂O in Ar at 500 °C for 300 h. b) Intensity ratio between the BaCO₃ and perovskite (220) peaks of BHCR172 as a function of ionic radius of R³⁺. Conductivity of BHCYb172, BHCY172, and BZCYYb1711 over 500 h in c) 30% CO₂ and 3% H₂O, and **d)** 30% H₂O in Ar at 500 °C.

Development of Proton Conducting Electrolytes with Enhanced Performance and Stability for Reversible Solid Oxide Cells Zheyu Luo, Yucun Zhou, Xueyu Hu, and Meilin Liu School of Materials Science & Engineering, Georgia Tech, Atlanta, GA 30332-0245

3. DFT-based calculations

Figure 3. a) The H_2O reaction schematic between BHCYb172 and H_2O . b) Gibbs free energy curves for the reaction of H_2O with BHCR172 (R=Yb, Er, Y). c) The CO_2 (top) and H_2O (bottom) adsorption behavior for AO-terminated BHCR172 (001) surfaces. **d)** CO_2 and $H_2O E_{ads}$ as a function of the ionic radius of R³⁺.

4. Compatibility with Ni-based electrodes

Figure 4. a) Magnified view of XRD patterns of BHCR172 (R = Yb, Er, Y, Gd, Sm) after firing with NiO at 1400 °C for 5 h. b) Intensity ratio between the BaR_2NiO_5 and perovskite (220) peaks of BHCR172 (R = Er, Y, Gd, Sm) as a function of the ionic radius of R³⁺. c) SEM image of the electrolyte surface of a Ni-BHCYb/BHCYb172 half cell with an electrolyte thickness of 10 µm after firing at 1400 °C for 5 h. d-f) SEM image and EDS mapping of the electrolyte surface of a Ni-BHCY/BHCY172 half cell with an electrolyte thickness of 10 µm after firing at 1400 °C for 5 h.

Luo, Z., Zhou, Y., Hu, X., Kane, N., Li, T., Zhang, W., Liu, Z., Ding, Y., Liu, Y., & Liu, M. (2022). Energy & Environmental Science, 15, 2992-3003

5. Impact of NiO compatibility on cell performance

Figure 5. Comparison of a) peak power density, b) ohmic and polarization resistance, and c) ionic transference number between BHCYb172- and

Figure

This work was supported by US Department of Energy, Office of Fossil Energy, Small-Scale Solid Oxide Fuel Cell Systems and Hybrid Electrolyzer Technology Development Program under the Award Number DE-FE0031975 and Phillips 66.

SEM **Cross-sectional** image a) the BHCYb172/BHCYb172/BCFN single cell. b) Typical I-V-P curves measured in the fuel cell mode at 500-650 °C with H₂ (3% H₂O) in the fuel electrode and ambient air in the air electrode. c) Typical I-V curves measured in the electrolysis mode at 500-650 °C with H₂ (3% H₂O) in the fuel electrode and air (30% H₂O) in the air electrode. **d)** Long-term stability in the fuel cell mode with H₂ (3% H₂O) in the fuel electrode and ambient air in the air electrode at 0.5 A cm^{-2} and 600 °C. e) Long-term stability in the electrolysis mode with H₂ (3%) H_2O) in the fuel electrode and air (3% H_2O) in the air electrode at -0.5 A cm⁻² and 500 °C. f) Reversible operation of the cell: the cell voltage as a function of time when the operating mode was switched between the fuel cell and electrolysis modes (2-12 h for each mode) at a current density of ± 0.5 A cm⁻² at 650 °C.

Summary

• Developed a Yb-doped proton conductor with enhanced stability and minimal reaction towards NiO

• Conductivity, stability, and NiO compatibility are all closely correlated with the acceptor dopant size

 Demonstrated high-performance solid oxide cells based on novel BHCYb172 proton conducting electrolyte

Acknowledgement