Morphology Control of LSCF Powders and Reliable Lab-scale Evaluation for Enhanced SOFCs Electrode Performance

Jae Jin Kim1, Anh D. Vu1, Donald C. Cronauer2, John D. Carter1, Victor A. Maroni1, Adam S. Hook3,4, Brian J. Ingram1
1 Chemical Sciences and Engineering Division, 2 Applied Materials Division, 3 Materials Science Division, Argonne National Laboratory.
4 Department of Chemistry, Illinois Institute of Technology.

Motivation
- Understanding & optimizing electrochemically active zone in solid oxide cells electrodes are indispensable to maximize performance.
- The relative role and hierarchy of materials properties and electrode structure corresponding to cell/stack performance reliability need to be identified.

Cost-Effective Powder Synthesis with Morphology / Chemistry Control
- Mass-producible powder synthesis via co-precipitation using continuous stirred tank reactor (CSTR) - well established in battery industry.

Potential Product
- LSCF powder from (Co0.2Fe0.8)O precursor.

Toward Enhanced Performance
- Porosity/particle connectivity control.
- Chemistry/Current collection control.

Reliable Lab-scale Evaluation
- Proper combination of mesh spacing and porous electrode thickness is required to ensure reliable R_{exch} determination.
- Porous metal current collecting layer could misleading evaluation.

Argonne’s Capabilities
- Fundamental materials studies to cell/stack development for SOFC technology.
- Cutting-edge facilities and scientific tools for in-depth research at the materials level that drives technological breakthroughs.

Acknowledgement & References
- This work was supported by the US DOE, Office of Fossil Energy & Carbon Management, “Solid Oxide Fuel Cell Manufacturing in Support of Office of Fossil Energy” program through Argonne Nat. Lab. under FWP No. 27327.1
- Joseph Stoffa, SOFC project manager
- Debalina Dasgupta, SOFC project manager
- Shalesh Vora, Technology Manager, SOFC Program.

Potential Extension
- Tailored electrode architecture to alleviate oxygen partial pressure build-up at SOEC air electrode.
- Targeted synthesis of core-shell structured powder for SOFC/SOEC interconnect coating.

Argonne, LLC.
Acknowledgement & References
High Bi$cosh$ = Sr for Argonne Leadership Computing Facility (ALCF)* morphology determination The FeMaximized electrical Argonne’s Capabilities Department of Chemistry, Illinois Institute of Technology. Chemistry/Current Porosity Mass Reliable Lab Understanding & optimizing Enhanced adhesion = R_{exch} reliability. This work was supported by the US DOE, Office of Fossil Energy & Carbon Management, “Solid Oxide Fuel Cell Manufacturing in Support of Office of Fossil Energy” program through Argonne Nat. Lab. under FWP No. 27327.1
- Joseph Stoffa, SOFC project manager
- Debalina Dasgupta, SOFC project manager
- Shalesh Vora, Technology Manager, SOFC Program.

Argonne’s Capabilities
- Fundamental materials studies to cell/stack development for SOFC technology.
- Cutting-edge facilities and scientific tools for in-depth research at the materials level that drives technological breakthroughs.

Acknowledgement & References
- This work was supported by the US DOE, Office of Fossil Energy & Carbon Management, “Solid Oxide Fuel Cell Manufacturing in Support of Office of Fossil Energy” program through Argonne Nat. Lab. under FWP No. 27327.1
- Joseph Stoffa, SOFC project manager
- Debalina Dasgupta, SOFC project manager
- Shalesh Vora, Technology Manager, SOFC Program.