Effects of Microstructural Variability and Operating Conditions on Cr-poisoning in Solid Oxide Fuel Cell Cathodes Using High-Performance Computing Simulations Innovation Center

Hokon Kim^{1, 2}, Anthony D. Rollett^{1, 2}, Paul A. Salvador^{1, 2,*}, William K. Epting^{1, 3}, Harry Abernathy^{1, 3}, Gregory Hackett¹ ¹US Department of Energy, National Energy Technology Laboratory, Pittsburgh PA/ Morgantown WV/ Albany OR; ²Carnegie Mellon University, Pittsburgh PA; ³NETL Support Contractor, Morgantown WV/ Albany OR;

Motivation

Key factors preventing widespread commercialization for SOFC 1. Durability, 2. Reliability, 3. Cost

- **Electrode microstructures affect these!**
- **Cr poisoning** is one major degradation mechanism (durability) Infiltration is a processing method to improve microstructures
- Infiltration is thought to increase resistance to Cr poisoning
- **Challenge** : complex electrodes, long lifetimes inhibit study
 - Chromium poisoning image

Solid State Ionics 354 (2020): 115410.

Improved performance via infiltrates

Can we explore Cr poisoning inside complex microstructures?

- We can simulate electrochemical performance using HPC
- ERMINE is a FEM code to simulate three phase cathodes
- We have implemented a standard tpb Cr-poisoning model

Volumetric meshed microstructure

Chromium deposition (i_{D,Cr_2O_3}) is driven by local overpotential at triple phase boundaries (η_{tpb}) :¹ $i_{D,Cr_2O_3}\left[\frac{A}{cm^2}\right] = i_D^* 2 \sinh\left(\frac{F}{2RT}\eta_{tpb}\right)$

METHODOLOGY 1. Run galvanostatic ERMINE simulation to find local η_{tpb} 2. Using η_{tpb} from t_{n-1} and Δt , active tpb at t_n : $V_{act}(t_n) = V_{act}(t_{n-1}) \times exp(-i_{D,Cr_2}o_3 \frac{V_{mol,Cr_2}o_3}{h_{Cr_2}E}\Delta t)$ *3. Update the tpb activity for* t_n *:* $S_{0,tpb}(t_n) = S_{0,tpb,init} \times \frac{V_{act}(t_n)}{V_{Fm}}$

*. Iterate through time until termination occurs

 \geq

b varies with the relative amount of data available (lower with less)

b varies weakly (0.14 ± 0.02) with tpb density, operating conditions, and life

U.S. DEPARTMENT OF

Cr poisoning model for Electrochemical Reactions in Microstructural Networks

¹Miyoshi et al., Journal of Power Sources 326 (2016): 331-340. Implementing chromium poisoning from:

Electrochemical reaction for Cr poisoning: $2CrO_2(OH)_{2(g)} + 6e^- \rightarrow Cr_2O_{3(s)} + 2H_2O + 3O^{2-}$

Material and operating parameters are in i_D^* :¹

 $i_D^* = i_{0,Cr_2O_3,init} x_{CrO_2(OH)_2}^{0.5} x_{H_2O}^{0.5}$

 $i_{0,Cr_2O_3,init}$ = exchange current for tpb Cr deposition¹ x_i = molar fraction of *i* in gas $V_{Act}(t)$ = active volume of local element at time t V_{mol,Cr_2O_3} = molar volume of Cr oxide h_{Cr} = Maximum height of Cr deposition (35 nm)¹ z = # of electrons transferred during reaction (6)¹ $S_{0,tph}(t)$ = volumetric rate of ORR at tpb at time t $S_{0.tnh.init}$ = vol. exchange current of ORR at tpb V_{Em} = volume of local element

F, R = Faraday, Gas constants

T =temperature (800 °C)

Analysis and Predicting Operating Time with Curve Fitting Method

Predicting Lifetime from Initial Data

$$E = E_c + b \ln \frac{t_{life}}{t_{life} - t} \approx E_c + \frac{b}{t_{life}} t \approx E_c + mt$$
$$t_{life} \approx \frac{b}{m}$$

b can be estimated by tpb density and conditions see images to the left from simulations *m* can be determined by fitting early time data see image below, approximating experiments

We use $0 \le t \le 600$ for High i_D^* cases We use $0 \le t \le 1500$ for Low i_D^* cases

Can simulations inform experimental predictions?

Most accurate for lifetimes about 2.5 from max of time range. Simulations can guide and understanding of experimental lifetime!

Conclusions

- Using 19 different microstructures, 2 different operational conditions, and *thousands* of individual HPC simulations, Cr-degradation was simulated over long timelines
- High and homogeneous *tpb* densities are essential to suppressing overpotential driven Cr-degradation
- Infiltration increases tpb density, lowers overpotentials, and increases life \approx 1.33 times on going from to 5 to 10 μ m⁻²
- Cr-degradation decay fits reasonably to progressive decay: $\mathbf{E} = \mathbf{E}_c + \mathbf{b} \ln \frac{\mathbf{t}_{\text{life}}}{\mathbf{t}_{\text{life}} - t} = \mathbf{E}_c - \mathbf{b} \ln \left(1 - \frac{t}{\mathbf{t}_{\text{life}}}\right)$ me
- Both t_{life} and b are linear with tpb density when fitted to similar data ranges (time or overpotential)
- Simulations can inform experimental predictions of lifetime For m = 0.002 V / 1000hr, t_{life} would be 70,000 hr (\approx 8 yr)

Further work is need for different operating conditions and lifetime definitions.

Science & Engineering To Power Our Future

