Project DE-FE 0031940

Efficient, Reliable, and Cost-Effective Reversible Solid Oxide Cell Technology for Hydrogen and Electricity Production

and

Project DE-FE 0032107

Development of Novel 3D Cell Structure and Manufacturing Processes for Efficient, Durable and Redox Resistant Solid Oxide Electrolysis Cells

23rd Annual Solid Oxide Fuel Cell (SOFC) Project Review Meeting October 25-27, 2022 Pittsburgh, PA

DE-FE0031940 **Project Overview**

- <u>Project</u>: Efficient, Reliable, and Cost-Effective Solid Oxide Cell Technology for Hydrogen and Electricity Production (DE-FE0031940)
- <u>Project Objective</u>: Develop and demonstrate reversible solid oxide cell (RSOC) technology with the three main specific objectives
 - (i) To validate design, materials and process of technology for both hydrogen and electricity production
 - (ii) To demonstrate operation of the technology at relevant conditions with improved performance, reliability and endurance
 - (iii) To confirm the cost effectiveness of the technology via a techno-economic assessment of a selected application
- <u>DOE/NETL Project Manager</u>: Ms. Sarah Michalik
- Project Team:
 - UCSD
 - Center for Energy Research: Dr. Nguyen Minh (PI)
 - Department of Electrical Engineering and Center for Memory and Recording Research: Dr. Eric Fullerton (Professor)
 - Department of NanoEngineering: Dr. Shirley Meng (Professor), Dr. Ping Liu (Professor)
 - OxEon
 - Dr. Elango Elangovan

DE-FE0031940 RSOC Technology

- RSOC technology for this project has two key elements
 - A compact, versatile and low-cost stack architecture: arrays of cell modules in electrical parallel and series connection
 - Superior-performance, fuel-flexible reversible cells

DE-FE0031940 Cell Configurations

 Cell Structure: (A) Substrate supported thin-film (TF) reversible solid oxide cell (RSOC) (500°-700°C) and (B) Hydrogen electrode (HE) supported RSOC (700°-800°C)

- Cell and substrate materials:
 - Electrolyte : yttria stabilized zirconia (YSZ)
 - Hydrogen electrode: Ni-YSZ
 - Oxygen electrode: lanthanum nickel cobaltite (LNC)-gadolinium doped ceria (GDC)
 - Electrolyte/electrode interlayer: GDC
 - Substrate for TF-RSOCs: Metal-coated anodized aluminum oxide (AAO)

DE-FE0031940 Cell Designs - Motivation

- Two types of cell configuration
 - Demonstrate the capability of the stack design to *incorporate different types of cell operating at different temperatures*
 - Use the more advanced *HE-supported cell as a backup with regards to risk mitigation*
 - Leverage and apply the development of *sputtered high-performance* oxygen electrodes for TF cells to HE-supported cells to improve performance as compared with state-of-the-art
- LNC-GDC oxygen electrode
 - A perovskite with high electrical conductivity
 - LNC (La_{0.97}Ni_{0.5}Co_{0.5}O_{3-δ}) contains *no strontium*, thus *unwanted Sr* segregation and interactions with volatile Cr species to form strontium chromium oxides are avoided

Application Selection and System Design and Analysis

Application Selection

• Reversible solid oxide cell (RSOC) systems selected

- Small-scale distributed RSOC systems
- Hydrogen production: 1,500 kg H₂/day
- Power generation: 480 kW (on natural gas)
- Applications selected
 - On-site hydrogen fueling stations
 - for passenger car, and light trucks
 - for school buses, passenger buses, and heavy trucks
 - for forklifts
 - Distributed hydrogen/power systems
 - Hydrogen/power systems for low population areas/small towns/offices/buildings
 - Hydrogen/power systems for remote areas

On-site hydrogen fueling station

Distributed hydrogen/power system

Technology Comparative Analysis

for Hydrogen Production

- Advantageous or relatively better/higher or commercial
- () : Relatively lower or moderate characteristic or prototype/precommercial
- : Disadvantageous or relatively poor or development need

RSOC System Schematic

DE-FE0031940 System Analysis - Reversible Operation

Fuel Cell Mode

Electrolysis Mode

DE-FE0031940 System Analysis - Electrolysis Mode Operation

Techno-Economic Assessment

Stack Cost Estimation Process

• Key assumptions

- Stack design being developed for the project
- Laboratory cell performance obtained to date
- Cell manufacturing in plant
- System capable of producing $1,500 \text{ kg H}_2/\text{day}$

Cost estimation process

Total Stack Cost Breakdown

	Cost (\$/kW)		
Cell material cost	150.16	79.8%	
Labor cost	24.51	13.0%	
Ancillary part cost	10.18	5.4%	
Plants & Utilities cost	2.18	1.2%	
Equipment cost	1.06	0.6%	
Total	188.09		

RSOC Cell Development

RSOC Cell Development - Key Activities

- Sputtering process scale-up studies
 - Demonstrate sputtering process scalability for cell fabrication
 - Improve film uniformity
- Metal coated AAO development
 - Development of metal coating process for AAO substrates
- Cell performance characterization
 - Electrochemical performance testing and performance mapping
 - Durability and long-term operation evaluation

DE-FE0031940 **Sputtering Process**

Sputtering Process Parameters

Key process parameters:

- Chamber pressure
- Target to substrate distance (TSD)
- Power
- Atmosphere

Sputtered Layer Thickness Uniformity

Deposited with Different TDS and Target Size

DE-FE0031940 Sputtering Recipe for Scale-up

Sputtering recipe for scale-up area deposition (over 5cmx5cm) is successfully developed

Component	Target Size/Materials	Power	Pressure	TSD
Hydrogen Electrode	3"Ni 2"GdCe	200WDC 200WDC	30mT	100 mm
Electrolyte	3"YSZ	200WRF	3mT	100 mm
Interlayer	3"GDC	200WRF	2mT	100 mm
Oxygen Electrode	3"GdCe 2"LNC	30WDC 200WRF	13.5mT	100 mm

Fabrication Scaleup

10cm×10cm Electrolyte support substrate

8cm×8cm LNC-GDC deposition with mask

After 8cm×8cm LNC-GDC deposition

DE-FE0031940 **Scaleup Cell**

DE-FE0031940 Evaluation of LNC-GDC Oxygen Electrode

LNC-GDC electrode reversibility .

LNC-GDC|GDC|YSZ|Ni-YSZ

- Performance better than ٠ conventional LSC-GDC electrode
- Short-term stability •

Evaluation of LNC-GDC Oxygen Electrode with and without GDC interlayer

YSZ supported symmetric cell with the configuration of (a) LNC-GDC/GDC/YSZ/GDC/LNC-GDC and (b) LNC-GDC/YSZ/LNC-GDC

LNC-GDC electrodes without GDC interlayer showed better performance

Sputtered Cell Performance Comparison of LNC-GDC with LSC-GDC

Extraordinarily high cell performance with LNC-GDC oxygen electrode at reduced temperatures (550°-600°C)

Cell Performance Mapping

Reversible Operation

- by Temperature: 550, 600, 650, 700°C
- H₂O:H₂ 50:50

Temperature	550°C	600°C	650°C	700°C
OCV	1.11 V	1.06 V	1.03 V	0.96 V
Peak Power Density	0.69 W/cm ²	1.89 W/cm ²	2.66 W/cm ²	4.06 W/cm ²
Current Density at 1.3V	0.35 A/cm ²	1.45 A/cm2	2.21 A/cm ²	3 A/cm ²

Fuel Cell Operation

by Steam Ratio: 3%, 10%, 25%, 50%, 75%

CH₄ fueled: 550, 600, 650°C

• 3% H₂O

RSOC Stack Development

Testing of 3-Cell Stack

2cmx2cm electrolyte supported cells

DE-FE0031940 Highlights

Key accomplishments

- Demonstrated scalability of sputtering process
- Demonstrated superior cell performance with LNC-GDC oxygen electrode
- Showed feasibility of the stack architecture and potential for low stack cost
- Developed a metal coating process for porous AAO substrates
- Estimated stack capital cost and cost of hydrogen

Project Overview

- <u>Project</u>: Development of 3D Cell Structure and Manufacturing Processes for Highly Efficient, Durable and Redox Resistant Solid Oxide Electrolysis Cells (DE-FE0032107)
- <u>Project Objective</u>: Develop and demonstrate highly efficient, durable and redox resistant solid oxide electrolysis cells (SOECs) with a focus on
 - (i) A cell design with the hydrogen electrode composed of two layers a 3D hydrogen electrode support layer and an exsolved perovskite hydrogen electrode active layer
 - (ii) A manufacturing scheme incorporating advanced inkjet printing and photonic sintering for fabrication of the cell configuration
- <u>DOE/NETL Project Manager</u>: Ms. Sarah Michalik
- Project Team:
 - University of California San Diego (UCSD)
 - Nguyen Minh (PI)
 - RocCera
 - Sam Ghosh, Arkady Malakhov
 - □ Rochester Institute of Technology (RIT)
 - Denis Cormier
 - □ Oak Ridge National Laboratory (ORNL)
 - Edgar Lara-Curzio

Cell Design

- Design features:
 - Hydrogen electrode supported configuration
 - Unique hydrogen electrode concept a support layer with 3D structural geometry coupled with an exsolved perovskite active layer
- Motivation:
 - 3D hydrogen electrode support for redox resistance
 - Exsolved perovskite hydrogen electrode active layer (high performance, improved stability, redox resistance)

Inkjet Printing of Hydrogen Electrode Support

Ink 24 Fired on 8YSZ 30x30 mm. 20x20 um 400 Hz. HP CL-3 Z -0.15 Height

Firing

Printing

Nickel Exolution of Ni-Substituted Perovskite Hydrogen Electrode Active Layer

 Reduced at 600°C with hydrogen
 200 nm
 1 mm

 Re-oxidized at 600°C with air
 200 nm
 1 mm

DE-FE0032107 Highlights

Key accomplishments

- Developed ink formulations
- Demonstrated inkjet printing of hydrogen electrode support configuration
- Demonstrated nickel exsolution in nickel substituted perovskite

Acknowledgments

- Ms. Sarah Michalik of DOE/NETL for assistance and support
- SOFC/SOEC/RSOC team at
 - UCSD and OxEon (31940)
 - UCSD, RocCera, RIT and ORNL (32107)