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Develop and Build an Efficient 5 kW Solid Oxide 
Electrolyzer and Demonstrate Operation under 
Simulated, but Commercially Relevant Conditions

▪Develop and build an efficient SOEC and demonstrate 
operation under simulated, but commercially relevant 
conditions 

▪Design electrode cassette modules that include a large 300 
cm2 active area cell, a metal frame and channels for gas 
flow. 

▪Develop and employ optimized materials to provide the best 
possible combination of performance, lifetime and cost.
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R&D to Reduce Stack Cost and Improve Durability

DOE  Targets

SOEC R&D

Materials R&D

2.8 cm2

Button

Cell

34 cm2

Intermediate

Scale

Gen 2

106 cm2 Active Area

Delphi Gen 2

Gen 3

105 cm2 Active Area

July 2003 

Delphi DPS3000-D
Delphi Gen 3 APU

SOFC stack R&D

20012000 2003 2008 

Gen 4

403 cm2 Active Area

2002 2010 2018 

SOEC materials R&D

Stack Thermal-Fluid-EC

2014 

5 kW SOEC

2018               2020

SOEC Stack R&DSOEC Materials R&D

SOFC stack

proposed

Technical Barriers and Gaps
HTE stack performance and durability remains 

understudied due to industry proprietary R&D: 
Stack durability is rarely reported 

Cost at scale is not known

Commercially relevant repeat units are not available

Commercially 

Relevant 

PNNL has established cells/stacks 

fabricating and modeling capabilities 

and expertise from multiple DOE 

SOFC R&D programs and private 

investments 
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PNNL Testing Approach: Button Cells, Full Size Cells, 
and Stacks

Larger size planar 

cell testing (2+6)

1-5 kW short stack 

testing (3 platforms)
High throughput button 

cell testing (~70 cells)

active area 

is 16 cm2

• Materials screening

• I-V and EIS measurements

• pH2O=1-99%; impurities

active area 

is 2-4 cm2

• Relevant steam utilizations

• High currents

• Temperature gradients

• Interconnect

• Components

• Seals

• Steam delivery and utilization 

• Heat management

• Durability

active area 300 cm2

EERE HFTO TA

with and 

without 

metal IC



Sintering in air and environment upto 1500oC

Seals and Protective Coating
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Solid Oxide Cell Manufacturing

Powder Synthesis and Processing

Glycine – nitrate powder synthesis

Fabrication Techniques

• Tape casting, screen printing, 
compression molding, injection 
molding, isostatic and uniaxial 
pressing, slip casting, laser 
cutting, roll lamination 8 ft long tape caster

Vacuum 

sealer

Hot roll laminator

Screen Printer

Laser Cutter

375 cm2

25 cm2

25 cm2

5 cm2

High Temperature 

Furnaces

Thin Film Techniques

• Spin coating, PVD, ALD,PLD, 
slurry and solution coating, 
ultrasonic spray coating



Cell Production of Different Sizes Established

375 cm2 parts

❑ Ni-YSZ electrode-supported planar cells have 

been selected as standard reference cells

❑ Successfully produced large cells to reduce 

stack part count, the number of interfaces in 

stack, and cost 

❑ Decreased YSZ thickness to reduce firing 

steps, cost, and improve the performance

❑ Developed a batch fabrication process to 

minimize the variance between separate cells

❑ Initiated the development of QA/QC 

procedures

❑ Initiated electrode microstructure optimization 

to improve performance and durability

PNNL produces cells for 
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Baseline Performance Obtained at 750oC at 1.3 Volt 
in 50% Steam Using Multiple Repeats for 6,000 
hours 

• Demonstrated in house reproducibility 

• Demonstrated cell stability; average degradation rate is below 17 ohm·cm2 per 1,000 hours

• Detailed EIS and DRT analyses attributed degradation during break-in period to two processes 
in 1 kHz–10kHz and 100 Hz–1 kHz frequency ranges, likely associated with diffusion 
phenomena in the oxygen electrode
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Hydrogen Electrode 

Triple-phase boundary 
determination using 
PNNL modeling tools 

No Ni coarsening or migration after 3,000 hours at 1.3V at 750 and 800oC

Probing for Degradation Mechanisms: Post-Test Cell 
and Component Characterization by SEM/EDS, 
EBSD, STEM, APT

50% steam  

90% steam  



Oxygen Electrode 

Co inconsistency
Sr migration

Gd diffusion into YSZ

Probing for Degradation Mechanisms: 

Post-Test Cell and Component Characterization by 

SEM/EDS, EBSD, STEM, APT

1.4 µm from GDC

2 nm

      

Fe,Co composition becomes richer in Fe; needs more statistics to confirm
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Thin Film Deposition of GDC and YSZ

• Tested cells with and without pre-sintered YSZ electrolyte after YSZ and GDC sputtering 
• Ohmic losses were reduced with sputtered GDC
• Observing more degradation that needs to be understood
• Not SrZrO3 related

Sr zirconate 

where film is thin
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Assembled and Tested 14 SOEC Stacks 
Using 300 cm2 Active Area Cells

• Successfully produced multiple well-sealed 
cassettes with large 300 cm2 active area 
electrode-supported SOEC cells

• Fabricated all other components

• Applied protective coatings to the metal parts and 
metallic interconnects to prevent corrosion and 
chromium volatility

• Assembled and tested 14 short stacks of different 
sizes, ranging from 250 W (1 cell) to 1 kW (4 
cells)

▪ Optimized cell fabrication and sizing 
procedures to match the metal window 
frames

▪ Optimized welding and sealing steps

▪ Improved air side contacts

▪ Addressed cassettes shorting 
1 kW SOEC stack with 
300 cm2 active area cells
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Used Predictive Modeling to Address the Initial 
Stress State in the PEN from Sintering and Sealing

• ANSYS Initial State process employed

• Assessed principal stresses in anode, electrolyte, and 
cathode H2 side stack seal

• Identified elastic strains from the elements in the PEN after 
running simulations of PEN sintering and PEN sealing

• Predict/ID key processing windows & 
tolerance: tested different plates, 
thicknesses, weights to obtain the best 
contacts while keeping the weight down

EERE HFTO TA
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Demonstrated Several Full Thermal Cycles 
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Thermal 
Cycle

Water 
shut off

Thermal 
Cycle

Single Repeat Unit Stack

200-250 W in 80% Steam at 750oC

Leak rate below the detection limit, hermetic seals

OCV=0.893 V, constant throughout the test 



Stack 12 Results

• Good initial performance with 
some initial degradation with 
time.

▪ 90% steam and ~ 50% steam 
utilization

• Total run time of about 350 hours

• Successfully thermally cycled

• Developed a short between cell 
3 and 4 shortly after the third 
thermal cycle  



Sealing Procedure Improvements 

• Issue: low yield after the cell-
to-window-frame sealing 
procedure; about 50% failure 
rate 

• Improvements: replaced 
dispensed glass by tape 
casting and improved load 
uniformity on the cell; yield is 
now very close to 100%; 
assemble is easier 

• Made many changes to 
prevent shorting

Tape cast seals

Cell to 

window 

frame seal



Stack Structural Integrity and Reliability Analysis 
Predicts Low Failure Probability

• Designed stack components and validated 
the design using thermomechanical analysis for 
structural integrity to predict stack and 
enclosure level displacements, stresses and 
investigate any CTE mismatch issues

• Optimized the meshing process of 
computational grids to reduce the computation 
time

• The reliability analysis mapped potential failure 

probabilities concentrated locally to specific 

areas of the cell depending on operating 

voltages and operating conditions 

Stack overall displacements   

(in-plane max ~1mm)

High local stresses in casing 

(near bolt holes)

Cell temperature profile Principal stress distribution
J. Bao et al, J. Electrochem. Soc. 2022, 169, 054523
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Investigation of Solid Oxide Co-electrolyzer
Performance with Deep Neural Network 

• The PNNL developed multi-physics solver (SOFC-MP[1][2]) for SOFC has been 
upgraded to support solving co-electrolysis in 2D and 3D scheme. 

• The solver predicts the co-electrolysis performance matching the experimental 
measurement for button cell at various cell operating conditions.

[1]: Lai, K., et al., Journal of Power Sources, 2011. 196(6): p. 3204-3222

[2]: Pan, W., et al., Journal of Power Sources, 2013. 232: p. 139-151.

Voltage - current density relationships for six fuel compositions Current density versus CO2/H2O ratio at five cell voltages

Bao et al., in preparation
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Investigation of Solid Oxide Co-electrolyzer
Performance with Deep Neural Network 

• SOFC-MP is applied to explore the 
performance of co-electrolyzer at 
different cell operating conditions with 
5000 simulation cases, 300 cm2

planar cells

• The deep neural network (DNN) is 
applied to construct the reduced 
order model (ROM)

• The DNN based ROM provides 
higher prediction accuracy than the 
conventional regression approaches

• DNN-ROM helps on understanding 
the response of the cell performance 
to the operating conditions

Bao et al., POSTER SESSION
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Investigation of Solid Oxide Co-electrolyzer
Performance with Deep Neural Network 

• DNN-ROM helps on understanding the response of the cell performance to 
the operating conditions

(a)

(c)

(b)

(d)

(a)

(c)

(b)

(d)

Current density variations at fuel flow/air rate of 120 and 1200 sccm.  (a) 

versus CO2/H2O ratio and cell voltage at temperature of 750 ℃; (b) versus 

CO2/H2O ratio at different voltages at temperature of 750 ℃; (c) versus 

temperature and cell voltage with CO2/H2O ratio of 5; (d) versus 

temperature at different voltages with CO2/H2O ratio of 5.

System efficiency variations at fuel/air flow rates of 120 and 1200 sccm.  

(a) versus CO2/H2O ratio and cell voltage at temperature of 750 ℃; (b) 

versus CO2/H2O ratio at different voltages at temperature of 750 ℃; (c) 

versus temperature and cell voltage with CO2/H2O ratio of 5; (d) versus 

temperature at different voltages with CO2/H2O ratio of 5.
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Summary

• Assembled and tested multiple short stacks using 300 cm2

cells 
▪ Successfully established stack repeat unit fabrication process 

▪ Established baseline performance of 1 kW stack in 80% steam at 
750oC to understand impact of stack fabrication on performance 
and life

▪ Thermally cycled SOEC stack with large cells

▪Obtained EIS data of a 1 kW stack and separate cells at 50-80% 
steam utilization. 
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5th Annual AWS Benchmarking Workshop 

to Engage Technology Experts

• LTE – Kathy Ayers, Nel

• HTE – Olga Marina, PNNL

• PEC – CX Xiang, Caltech

• STCH – Ellen Stechel, ASU

• Protocol development for bench-scale, sub-scale and higher levels

• Face-to-face discussions about protocols

• Effective comparison of results

• Leverage international efforts to increase harmony across the field 

• Wide community engagement

• Identify Round Robin verification sites

• Understand needs of the community
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