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Simulated, but Commercially Relevant Conditions

= Develop and build an efficient SOEC and demonstrate
operation under simulated, but commercially relevant
conditions

» Design electrode cassette modules that include a large 300
cm? active area cell, a metal frame and channels for gas
flow.

» Develop and employ optimized materials to provide the best
possible combination of performance, lifetime and cost.



W/ R&D to Reduce Stack Cost and Improve Durability

Pacific
Northwest

NATIONAL LABORATORY

Technical Barriers and Gaps DOE Targets

HTE stack_ performance and durab_lllty remains " MTE Electrolyzer Stack Goals by 2025
understudied due to industry proprietary R&D:

Stack durability is rarely reported
Cost at scale is not known
Commercially relevant repeat units are not available

Capital Cost $100/kW
Electrical Efficiency (LHV) | 98% at 1.5 A/cm?
Lifetime 60,000 hr

Gen 4
403 cm? Active Area
= Stack Thermal-Fluid-EC

106 cm? Active Area
34 cm? Gen 3

Intermediate ' & - 105 cm? Active Are

o memediate g o pcive ol PNNL has established cells/stacks
ﬁ “ " fabricating and modeling capabilities
i and expertise from multiple DOE

S SOFC R&D programs and private
e pp——— | —— T investments

Commercially

Delphi Gen 3 APU , Relevant
Delphi DPS3000-D

Delphi Gen 2




~~~ PNNL Testing Approach: Button Cells, Full Size Cells,
racific  and Stacks

Northwest
High throughput button Larger size planar 1-5 kW short stack
cell testing (=70 cells) cell testing (2+6) testing (3 platforms)
— |l rn 2 i ' -_— g
i =IN = with and e — ;
+ without s (b
metal IC [-.—
active area -
IS 2-4 cm?

active area
is 16 cm?

active area 300 cm?

H:NEW . EERE HFTO TA
* Relevant steam utilizations v e oraee Components | O

- High currents ) geals del 4 utilizati
. Temperature gradients team delivery and utilization

Materials screening * Heat management
|-V and EIS measurements Interconnect * Durability

pH,0=1-99%; impurities
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Powder Synthesis and Processing

Fabrication Technigues
« Tape casting, screen printing,
compression molding, injection Glycine — nitrate powder synthesis
molding, isostatic and uniaxial ' ,
pressing, slip casting, laser
cutting, roll lamination

High Temperature S8
Furnaces

Thin Film Techniques

* Spin coating, PVD, ALD,PLD,
slurry and solution coating,
ultrasonic spray coating

Sintering in air and environment upto 1500°C

Hot roll laminator

Screen Printer

Seals and Protective Coating 375 cm?2
25 sz 4 - _‘

. , 25 cm?
cm >




\7/ Cell Production of Different Sizes Established
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d NiI-YSZ electrode-supported planar cells have
been selected as standard reference cells

d Successfully produced large cells to reduce

stack part count, the number of interfaces in

stack, and cost

Decreased YSZ thickness to reduce firing

steps, cost, and improve the performance

Developed a batch fabrication process to

minimize the variance between separate cells

Initiated the development of QA/QC

procedures

Initiated electrode microstructure optimization

to improve performance and durability
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Baseline Performance Obtained at 750°C at 1.3 Volt
oq. 1IN 50% Steam Using Multiple Repeats for 6,000
Northwest  hours

H2NE‘N Cell Losses from EIS at a bias current 1.2
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« Demonstrated in house reproducibility
« Demonstrated cell stability; average degradation rate is below 17 ohm-cm? per 1,000 hours

« Detailed EIS and DRT analyses attributed degradation during break-in period to two processes
In 1 kHz—10kHz and 100 Hz-1 kHz frequency ranges, likely associated with diffusion
phenomena in the oxygen electrode




' \7/ Probing for Degradation Mechanisms: Post-Test Cell
recific  and Component Characterization by SEM/EDS,
EBSD, STEM, APT

Hydrogen Electrode
No Ni coarsening or migration after 3,000 hours at 1.3V at 750 and 800°C

50% steam

90% steam

Triple-phase boundary
determination using
PNNL modeling tools



\7/ Probing for Degradation Mechanisms:
Pacific Post-Test Cell and Component Characterization by

Northwest

SEM/EDS, EBSD, STEM, APT
Oxygen Electrode

Sr migration

Co inconsistency

W Tinee

1.4 um from GDC
BROCEE

2.5um

Fe,Co composition becomes richer in Fe; needs more statistics to confirm
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Sputtered vs Standard cells

Time (hours) Sr zirconate

where film is thin

e Tested cells with and without pre-sintered YSZ electrolyte after YSZ and GDC sputtering
e Ohmic losses were reduced with sputtered GDC

e Observing more degradation that needs to be understood

e Not SrZrO, related



\;7/ Assembled and Tested 14 SOEC Stacks
Pacific Using 300 cm? Active Area Cells
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« Successfully produced multiple well-sealed
cassettes with large 300 cm? active area
electrode-supported SOEC cells

» Fabricated all other components

« Applied protective coatings to the metal parts and
metallic interconnects to prevent corrosion and
chromium volatility

 Assembled and tested 14 short stacks of different
sizes, ranging from 250 W (1 cell) to 1 kW (4

cells)

= Optimized cell fabrication and sizing
procedures to match the metal window

frames
= Optimized welding and sealing steps
* Improved air side contacts

» Addressed cassettes shorting 1 kW SOEC staé: i h
300 cm? active area cells
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Sintering Final 850C Tref=1350C

F’ Sealing Final Roo mep

 ANSYS Initial State process employed

« Assessed principal stresses in anode, electrolyte, and
cathode H, side stack seal

+ ldentified elastic strains from the elements in the PEN after
running simulations of PEN sintering and PEN sealing

Stress State in the PEN from Slnterlng and Sealmg

Predict/ID key processing windows &
tolerance: tested different plates,
thicknesses, weights to obtain the best
contacts while keeping the weight down
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Demonstrated Several Full

hermal Cycles

- 1 180
1.4 ﬁ
i 160
Thermal
12 Water Thermal Wat Cycle 140
I Cycle shztec:ff
1 & 120
<08 | ) " p— 100
o 80
S 06
> 0.4 °0
o 40
© 02 k 20
O | | | , , | O
0:00:00 24:00:00 48:00:00 72:00:00 96:00:00 120:00:00 144:00:00 168:00:00 192:00:00
Elapsed Time —Voltage —Current

Single Repeat Unit Stack
200-250 W in 80% Steam at 750°C

Leak rate below the detection limit, hermetic seals

OCV=0.893 V, constant throughout the test



W/ Stack 12 Results
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« Good Initial performance with
some initial degradation with
time.

= 90% steam and ~ 50% steam
utilization

* Total run time of about 350 hours
« Successfully thermally cycled

* Developed a short between cell
3 and 4 shortly after the third
thermal cycle

Current Density (A/cm?)

Current Desnity (A/cm”2)

o
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 Issue: low yield after the cell-
to-window-frame sealing
procedure; about 50% failure

Cell to
rate .
window
* Improvements: replaced frame seal

dispensed glass by tape
casting and improved load
uniformity on the cell; yield iIs
now very close to 100%;
assemble Is easier

 Made many changes to
prevent shorting




Stack Structural Integrity and Reliability Analysis
Pacific Predicts Low Failure Probability
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Designed stack components and validated
the des'Qn_ usmg thermom_echanlcal anaIyS|S for Stack overall displacements  High local stresses in casing
structural integrity to predict stack and (in-plane max ~1mm) (near bolt holes)
enclosure level displacements, stresses and

Investigate any CTE mismatch issues e S,

Optimized the meshing process of RS
computational grids to reduce the computation g SRR T T N T ol TR T e

tlme Tem:pgfature profile @1.24V and @1 -4V
T : : _ ~ o
The reliability analysis mapped potential failure -

probabilities concentrated locally to specific

Temperature (C}
761.C F74.0

areas of the cell depending on operating i Ll it
voltages and operating conditions |

Cell Principal Stresses -
Reliability=100% Cell Principal Stress

inci
Reliability=81%

J. Bao et al, J. Electrochem. Soc. 2022, 169, 054523

Cell temperature profile Principal stress distribution
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« The PNNL developed multi-physics solver (SOFC-MPL2]) for SOFC has been
upgraded to support solving co-electrolysis in 2D and 3D scheme.

* The solver predicts the co-electrolysis performance matching the experimental
measurement for button cell at various cell operating conditions.

Comparison between experimental and simulation results Comparison between experimental and simulation results
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[1]: Lai, K., et al., Journal of Power Sources, 2011. 196(6): p. 3204-3222
[2]: Pan, W., et al., Journal of Power Sources, 2013. 232: p. 139-151.

Bao et al., in preparation
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Bao et al., POSTER SESSION

« SOFC-MP is applied to explore the
performance of co-electrolyzer at
different cell operating conditions with
5000 simulation cases, 300 cm?
planar cells

* The deep neural network (DNN) is
applied to construct the reduced
order model (ROM)

« The DNN based ROM provides
higher prediction accuracy than the
conventional regression approaches

« DNN-ROM helps on understanding
the response of the cell performance
to the operating conditions

Investigation of Solid Oxide Co-electrolyzer
Performance with Deep Neural Network

Multi-Physics Modeling for Identification of Critical Factors in Solid
Oxide CO,-Steam Co-Electrolysis System Performances and Durability

Dewei Wang, Jie Bao, Christopher Coyle, Olga Marina

Abstract

A multi-physics modeling framework, which includes
electrochemical and chemical reactions, mass transfer, and
energy balance, has been developed and validated against
experimental measurements to investigate the performance of
solid oxide CO.-steam co-electrolysis (SOEC) under various
operating conditions and cell designs. A deep neural networks
{DMMN) algorithm was employed to construct reduced-order
models (ROMs) according to multi-physics simulations for
S0ECs to systematically investigate the SOECs’
electrochemical performance for both small button cell and
large, 100-300 cm?, planar cells. It was found that steam is
electrolyzed with very high priority over CO;, even if there was
only small fraction of steam in the feed.

Methodology
" Numerical model SOFC-MP was applied to simulate
S0ECs with quasi-twe-dimensional assumptions,

considering three major reactions:

® 2H.0 - 2Ha+ 02
® 0.4 Hye CO+ H.O
® 3H,+C0, e CHy+ H.O

" Benchmarking with experimental measurements.

L bt et s s

" Deep Neural Network (DNN) was implemented to construct
reduced-order models {(ROMs) as an alternative to the
numerical model to reduce computational costs.

e e Flgura 2: ROM
- prediction aocuracies
(85% confidence inberal)

for each electmchemical
chamcterstios.

1.5 DEPARTMENT OF

Results

Sensitivity studies of operating parameters
" Operating parameters' contributions to each output
parameters were evaluated by DNN-ROM.

*  Current density's variation was mostly contributed by
cell voltage and temperature, 35.29% and 42.2%,
respectively.

*  ACOQIAH; ratio was highly dependent on CO42/H; O ratio,
51.64%.

Flgurs 3- Influence of each apeating parimeter on each culpul in 3 pererige.

Sensitivity studies of cell size & thermal
boundary

" |nternal temperature variation showed dependencies on
fuel and air flow rates with larger-size planar cells.
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Figure E: Cormgaarion of cell sempeature wrtion 4T amang difernt cel
sires ard themial bowndary conditiens.
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Degradation & Boudouard reaction in
SOECs

* MNumerical model SOFC-MP has integrated several
degradation mechanisms: Sr/Zr diffusion, MNi-coarsening,
sulfur poisoning, and Boudouard reaction.
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 DNN-ROM helps on understanding the response of the cell performance to
the operating conditions

Efficiency, [sccm/W]
@Fuel flow rate=120 [sccm), Air flow rate=1200 [sccm], Temperature=750 [C]
Current density, [A/cm2]
@Fuel flow rate=120 [sccm], Air flow rate=1200 [sccm], Temperature=750 [C]
@Fuel flow rate=120 [sccm], Air flow rate=1200 [sccm], Temperature=750 [C]

@Fuel flow rate=120 [sccm], Air flow rate=1200 [sccm], Temperature=750 [C] 6.50

055 50.45 a5 6.25 Sr—————
0.50 g 0.40 /__\\\‘-”——‘— 600 '5_:6,00
! < e Es. —— V:1.103 [V]
oo Som o R S = /g Bl
0.40 Zo30! / —— V1.2 V] 5.50 = DN
s P2 @ s (0) £5%| ff vz
oo ;0'25 — V:1.3333[V] oo Z5.00 / o
i 0 0.20 e : =y !
23 3 0.15 ,//-v 473 : ZZ
; ' 2 6 8 10
. :i: : 4<:osz'2<:).6[71 ° 10 420 CO2/H>0, [-]
Co?//yeo,SH & s
Efficiency, [sccm/W]
Current density, I, [A/cm2] @CO02/H,0=5 [-], Fuel flow rate=120 [sccm], Air flow rate=1200 [sccm]
@CO2/H20="5 [-], Fuel flow rate=120 [sccm], Air flow rate=1200 [sccm]
@CO,/H>0=5 [-], Fuel flow rate=120 [sccm], Air flow rate=1200 [sccm] s @CO,/H;0=5 [-], Fuel flow rate=120 [sccm], Air flow rate=1200 [scem]
14 ,
14 E 1.2 ‘ 00 o7 g °
12 210 —— V:1.103 [V] ., e W= £6.0 —— V: 1103 [v]
Y Zos —— V:1.1333[V] 625 | 1625 Y —— V:1.1333[V]
£0- —— V1.2 [V] ; = —— V:1.2[V]
o (d) $0.6 « V1 1.2667 [V] (C) 55,;3 6.00 (d) QS.G ~— V: 1.2667 [V]
04 —— V13333 (V] B k1 —— V:1.3333[V]
o8 é ' 5.50 E 54
%4 3 zi °-g§\ 5.25 31 E—
02 "~ 650 700 750 800 850 900 900 o ; g 500 650 700 750 800 850 200
Temperature, [C] Te"?:o o oo 1‘31.240\4, Temperature, [C]
eraturel ic) 650 c00 14 (?\
Current density variations at fuel flow/air rate of 120 and 1200 sccm. (a) System efficiency variations at fuel/air flow rates of 120 and 1200 sccm.
. 1 o
versus CO,/H.,O ratio and cell voltage at temperature of 750 °C; (b) versus (a) versus CO,/H,0 ratio and cell voltage at temperature of 750 °C; (b)
. . 1 1 o -
CO,/H,0 ratio at different voltages at temperature of 750 °C; (c) versus versus CO,/H,0 ratio at different voltages at temperature of 750 °C; (c)
temperature and cell voltage with CO,/H,O ratio of 5; (d) versus versus temperature and cell voltage with CO,/H,0 ratio of 5; (d) versus




" K Summary

Northwest

AAAAAAAAAAAAAAAAAA

» Assembled and tested multiple short stacks using 300 cm?
cells
= Successfully established stack repeat unit fabrication process

» Established baseline performance of 1 kW stack in 80% steam at
/50°C to understand impact of stack fabrication on performance
and life

» Thermally cycled SOEC stack with large cells

» Obtained EIS data of a 1 kW stack and separate cells at 50-80%
steam utilization.




G' HydroGEN

Advanced Water Splitting Materlals

May 2 - 3, 2023

5% Annual Advanced Water Splitting Technology Pathways
Benchmarking & Protocols Workshop

Location: Sky Song: The ASU Scottsdale Innovation Center- Scottsdale, AZ
http://skysong.com/

Obijectives:

* Summarize progress over past years and identify opportunities for further
collaboration

* Review, refine, identify test protocols and plan for validation
Review, refine, identify, and resolve issues regarding technology roadmaps

Identify, leverage, and align related international efforts

We will be providing pre-registration and other details in late February.
Requests to register will be reviewed to ensure uniform representation
across advanced water splitting technologies and institutions.
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Workshop Organizers
Kathy Ayers <kayers@nelhydrogen.com>; Ellen Stechel <Ellen.Stechel@asu.edu>

Chengxiang (CX) Xiang <ox@caltech.edu>; Olga Marina <Olga.Marina@pnnl.gov>

€l =

5t Annual AWS Benchmarking Workshop
to Engage Technology Experts

« LTE — Kathy Ayers, Nel

« HTE — Olga Marina, PNNL
« PEC — CX Xiang, Caltech

« STCH — Ellen Stechel, ASU

» Protocol development for bench-scale, sub-scale and higher levels
» Face-to-face discussions about protocols

« Effective comparison of results

« Leverage international efforts to increase harmony across the field
« Wide community engagement

« ldentify Round Robin verification sites

» Understand needs of the community

ot nele FSU Caltech

Northwest -
NATIONAL LABORATORY Unlverslty
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