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Background

O-SOEC H-SOEC

 High conductivity
 Low-temperature operation

Reduced cost, enhanced durability
 Dry H2 (no need for H2 separation)

The most efficient and low-cost option for H2 production
But, many challenges still remain that must be overcome to realize the advantages. 

Science 326, 126 (2009).

Ni oxidation No Ni oxidation



• BaZrxCe0.8-xY0.2-yYbyO3-δ (BZCYYb)
Performance is limited by a tradeoff between stability & conductivity

• BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb1711)
– Achieves high conductivity and tH

– But questionable long-term stability during electrolysis

– BZCYYb4411 is more stable but less conductive

• BaHf0.8Yb0.2O3-δ (BHY82)
– Excellent stability against high concentration of H2O/CO2

– But relatively low conductivity

• The optimal composition for bulk and surface should be different.

The bulk is optimized for conductivity while the surface is for stability.

Challenges for Proton Conductors

BZCYYb1711

BHYb82
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Challenges for Air Electrode of rSOCs-H+

LSCF/LSM are not suitable.

• Unstable in high conc. of steam
• Higher Rp

• How to maintain long-term stability against H2O and Cr?
• How to develop highly active air electrodes for low-temperature operation?

Burden is shifted to air electrode.

Electrode reactions are different.
H+ transport would be helpful.
H+ , 𝑶

ȉ⋅ e’ 
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Objectives

• To develop and optimize a surface modification process (sputtering, SSG, 
ALD) for deposition of conformal coatings on electrolyte/electrode surface 
with controlled composition and morphology

• To characterize the electrochemical properties of surface-modified 
electrolyte/electrodes under typical operating conditions and correlate the 
properties with the microscopic features of the coating

• To develop and optimize surface modification layers that greatly enhance 
stability while maintaining high electrochemical performance

• To synthesize the information in order to establish the scientific basis for 
rational design of durable electrolytes, electrodes, and catalysts for rSOCs
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Technical Approach

 Developing new composition and 
structure of proton conducting 
electrolytes;

 Tailoring the compositions, structure, 
and architecture of air electrodes;

 Optimizing compositions, thickness, 
morphology, and fabrication processes 
of surface coatings;

 Understanding the degradation 
mechanisms using various in situ, ex 
situ, and operando measurements 
guided by theoretical analysis.

Electron
spectroscopy,

Microscopy
(SEM/TEM)Vibrational 

Spectroscopy
(FTIR/Raman
SERS, TERS)

Conductivity &
Electrochemical
measurements

In situ 
XRD/XAS/XPS

Test Cell

1. Unraveling the mechanisms
2. Rational design of novel              

catalysts & materials

Multi-scale 
Modeling

DFT

MD

Continuum
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Tasks and Project Schedule

Oct. 2022

Task Description
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Status of Milestones

Date Milestone % Complete

12/21 Complete electrolyte development with conductivity >0.01 S cm-1 in Ar (3%H2O) and ionic 
transference numbers >0.95 at 600 ºC.

100

03/22 Complete bi-layer electrolyte development with the durability of at least 500 h with a degradation 
rate of <0.5% per 1,000 h. 

100

06/22 Complete air electrode development with a Rp of <0.3 Ω cm2 at 600 ºC in Air (3%H2O). 100
09/22 Complete air electrode optimization with a Rp of <0.2 Ω cm2 at 600 ºC in Air (3%H2O). 100
12/22 Complete the catalyst modification of the air electrode with a Rp of <0.15 Ω cm2 at 600 ºC in Air 

(3%H2O), and the durability evaluation for at least 500 h with a degradation rate of <0.5% per 
1,000 h under the presence of contaminations (e.g., H2O and Cr).

50

03/23 Complete in situ and ex situ characterization of surface morphology and surface species using 
experimental and modeling work to determine the activity and stability of the cells as a function of 
contaminant presence, relevant operating conditions, and catalyst content.

10

06/23 Complete the fabrication of button cells with a current density of >1.8 A cm-2 at 1.3 V in electrolysis 
mode at 600 °C and ≥75% roundtrip efficiency in both SOFC and SOEC modes at ≤ 650 °C.

5

09/23 Complete the long-term durability evaluation of button cells for at least 500 h with a degradation
rate of <0.5% per 1,000 h.

Not started



10

Hypothesis: 

Thin, highly-stable electrolyte layers can protect highly-conductive 
bulk electrolytes from degradation

Approaches:

• Fabrication of dense thin films on dense electrolytes

• Characterization of the structural, morphological, and 
electrochemical properties

• Correlation between electrochemical performance and 
microscopic features of the films

Accomplishments to date: Bi-layer electrolyte via co-sputtering



BHYb: a thin-film less 
conductive but highly 
stable against CO2/H2O

Optimized co-sputtering conditioins

Quartz Lamp 
Heater

Sputtering Guns: Co-sputtering

BZCYYb
Half Cell

Optimized Parameters
• BaHf0.8Yb0.2O3

• Pure Ar
• 5 mTorr
• BHYb82: 4 W/cm2

• Ba: 0.8 W/cm2,   
Throttled to 40%

• Tsub 650 °C
• Tanneal 950 °C

BZCYYb1711: a highly 
conductive but less stable 
substrate 
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Co-sputtering achieves dense films with proper stoichiometry
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Dense, columnar BHYb film on BZCYYb

Well adhered and continuous over the entire electrolyte
Element Atomic %

Ba 6.05
Hf 5.01
Yb 1.06
Ag 23.29
O 64.03

Ba:Hf 1.21
A:B 1.00

BZCYYb1711

BHYb82

Electrolyte-supported Cell

Anode-supported Single Cell
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Structural Features and Conductivity 

• Epitaxially orientated ~110 nm BHYb coating was fabricated on the BZCYYb1711 substrate 

• Conductivity of the bi-layer electrolyte is comparable to the unmodified BZCYYb1711

Lattice constant of 
BHYb82 film is ~5.8% 
smaller than that of the 
BZCYYb1711
substrate.
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Local Structure and Strain

• Local structure of the electrolytes at the interface is confirmed by 4D STEM analysis 

• Shear strains around the interface are observed due to the difference in lattice parameters 

Each pixel 
represents the 
location of an 
SAED pattern

d) in-plane and 
e) out-of-plane strain 
maps

f) shear strains around 
the interface and 
extending 200 nm into 
bulk
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Stability Against CO2

• Bi-layer electrolyte shows high chemical stability against CO2

BZCYYb1711 Bi-layer electrolyte

Raman: More 
sensitive to 
surface

100 h

1,000 h
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Performance of the bilayer electrolyte-based cells  

Bi-layer electrolyte

• PPD of unmodified cell: 1.58 W cm-2 at 650 °C (Ref.)
• PPD: 1.64 W cm-2 at 650 °C while maintain excellent stability, effectively circumventing 

tradeoff between stability and conductivity 
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Performance in SOFC & SOEC modes

• Single cells with the bi-layer electrolyte show high performance and 
stability in both fuel cell and electrolysis modes.

Bi-layer electrolyte
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Accomplishments to date: Single-phase Electrolytes

• Developed a new family of proton-conducting electrolytes (S1) with high stability

• High conductivity (0.02 S cm-1) and ionic transference number (0.97) at 600 °C

a b



19

pH2O Dependence of Conductivity

• The new electrolyte has higher water-uptake capability than BZCYYb.

• The conductivity depends strongly on water content, making it a well-suited 
candidate for water electrolysis

600°C

500°C
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Stability Against H2O

• New electrolyte S1 exhibits excellent stability against 30% steam  

• Secondary particles were observed on BZCYYb1711 electrolyte surface, 
highly concentrated along the grain boundaries

a b
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Stability Against CO2

• New electrolyte S1 shows better stability against CO2 than BZCYYb1711.



22

Chemical Compatibility with NiO

• New electrolyte S1 shows good chemical compatibility with NiO during co-sintering at 1400 °C for 5 h

a b
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Accomplishments to date: Air Electrode Development

• Developed a new family of air electrode (BPHYC) with high ORR/OER activity 

Material Synthesis
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BPHYC: a multi-phase composite

 Three phases (BYC, PBC, and BHY) are identified in BPHYC by XRD and HR-TEM 

(b)

(c) (d) (e)Phase A: BYC Phase B: PBC Phase C: BHY



26

Contribution of Each Phase

• Mixture of BYC and PBC shows reduced polarization resistance.

• BYC and PBC shows a synergistic effect on the electro-catalytic activity.

a b
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Impedance spectra of symmetrical 
cells with BYC, PBC, and BPYC 
electrodes were measured under 
different oxygen partial pressures.

(a) (b)

(c)

Impedance Spectra of Symmetric Cells
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Effect of pO2 on BYC and PBC: DRT Analysis

PBCBYC
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Oxygen surface adsorption/dissociation process

Oxygen bulk diffusion process

Effect of pO2 on BPYC: DRT Analysis
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RP in SDC and BZCYYb-based Cells

• BPYC phase contributes more to the proton-related ORR kinetics 
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Understanding of the ORR Process

Head-on

Side-on
Reconstruction and dissociation

Incorporation

PBC

BCY

CI-NEB

BYC has lower activation energy for ORR than PBC.



32
 Introduction of BHY enhances the oxygen transport kinetics of BYC

Oxygen p-band center calculation

BaY0.125Co0.875O3 (BYC) BaY0.125Co0.875O3+BaHf0.75Y0.25O3 (BYC+BHY)

DOS for BCY
p band center = -2.268 eV

DOS for BCY+BHY
p band center = -1.901 eV

Adv. Energy Mater. 2018, 8, 1702708
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Optimized Activity and Stability

• Electrode polarization resistance: < 0.2 Ω cm2 at 600 ºC
• Good stability in humified air 
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Cell Performance in the Fuel Cell Mode

• Very high performance in the fuel cell mode
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Cell Performance in the Electrolysis Mode

Bi-layer electrolyte
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Summary

 Achieved all milestones as scheduled

 Demonstrated that a protective coating is effective to enhance stability, resulting 
in conductive and stable bi-layer electrolyte

 Developed a new proton-conducting electrolyte with excellent stability against 
high concentration of steam and CO2 while maintaining high conductivity

 Developed a composite air electrode with high ORR/OER activity and durability

 Demonstrated high performances in both fuel cell and electrolysis mode

• Peak power density of 1.34 W cm-2 and electrolysis current density of 2.4 A
cm-2 at 1.3 V and 600 °C

• 500 h operation at 600 °C with no minimum degradation
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Future Work

End of Project 
Goal:

Demonstrate a current density of >1.8 A cm-2 at 1.3 V in electrolysis 
mode at 600 °C and ≥75% roundtrip efficiency in both SOFC and 
SOEC modes at ≤ 650 °C. Complete >500-h operation with a 
degradation rate of <0.5% per 1,000 h.

FY23

Date Brief Description Complete
12/22 Complete the catalyst modification of the air electrode with a Rp of <0.15 Ω cm2

at 600 ºC in Air (3%H2O), and the durability evaluation for at least 500 h with a 
degradation rate of <0.5% per 1,000 h under the presence of contaminations 
(e.g., H2O and Cr).

50%

03/23 Complete in situ and ex situ characterization of surface morphology and 
surface species using experimental and modeling work to determine the activity 
and stability of the cells as a function of contaminant presence, relevant 
operating conditions, and catalyst content.

Not 
started
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