Developing Stable Critical Materials and Microstructure for High-Flux and Efficient Hydrogen Production through Reversible Solid Oxide Cells

(DE-FE-0032111)

Prof. Kevin Huang

SmartState Chair Professor and Director of Solid Oxide Fuel Cell Center

University of South Carolina

Students: Nansheng Xu, Jiaxin Lu and Yonglian Zhang

Present to the 23rd SOFC Review Meeting, Pittsburgh, October 25-27, 2022

About Project

Project Goal

- To advance reduced temperature (≤700°C) ZrO₂based SOCs technology for high-efficiency and low-cost power and H₂ production.
- Tasks:
 - 1. Developing barrier layer free oxygen electrode (BLF-OE) for SOCs operation at $\leq 650^{\circ}$ C
 - 2. Developing ALD-SCT (SrCo_{0.9}Ta_{0.1}O_{3- δ})@LSCf-GDC bilayer OEs for SOCs operation at \leq 700°C
 - 3. Developing porosity-graded hydrogen electrode (HE) substrate
 - 4. Validating the developed new materials/ microstructure in small and large cells
 - 5. Developing coupled electro-chemo-mechano model

About Team

- University of South Carolina (Lead): Tasks 1, 2, 3, 5
 - Prof. Kevin Huang
 - Prof. Frank Chen
- Pacific Northwest National Laboratory (Subcontractor): Task 4
 - Dr. Olga Marina

Tasks

Task-1: Developing High-Performance BLF-OE

Task 2: ALD Supercycle to Fabricate SCT overcoat on LSCF-GDC

Tasks

Task-3: Fabricating Open Structured HE Substrate by Phase Inversion Method

Task-4: Independent Cells Testing at PNNL

UNIVERSITY OF South Carolina

Task-5: Developing Electro-Chemo-Mechano-Model at OE/Electrolyte Interface

- Electrical current vs. lattice O-stoichiometry of OE
- Lattice O-stoichiometry vs. chemical stress
- Chemical stress vs. mechanical stress

Functional Layers in ZrO₂-based SOCs

Functionality of BL: to prevent interaction between OE and ZrO_2 -ELs It accounts for ~10-20% performance loss

Potential Impacts of Removing Barrier Layer from SOCs

Simplifying SOCs processing by reducing one firing step

Avoiding chemical reactions between CeO₂ and ZrO₂

Lowering ohmic resistance

Improving cell performance

First and Latest Reported BLF-OEs

NiO-GDC/AFL/ESB-GDC/LSM-ESB/LSM+ESB

CoFe₂O₄-Er_{0.4}Bi_{1.6}O₃/YSZ/YSZ-Ni

K.T. Lee, E. Wachsman, et al. Journal of Power Sources 220 (2012) 324-330

Kim, et al., J. Mater. Chem. A, 2022, 10, 2045

Our Early Work on BLF-OEs: LSM-BYC

K. Huang and J.B. Goodenough, Solid State Ionics, 89 (1996) 17-24.

C. Zhang, K. Huang, J. Power Sources, 342 (2017) 419-426

LSM-BYC Phase and Cell Microstructure

"One-Pot" wet-chemical method

South Carolina

Typical SOFC Performance of LSM-BYC Cell

Zhang and Huang, J. Electrochem. Soc., 2022, 169, 034516.

R_{P} and η of SP-BLF-OE

Zhang and Huang, J. Electrochem. Soc., 2022, 169, 034516.

R_P Stability under ORR and OER Modes of BLF-OE

SP-LSM-BYC/ScSZ/LSM-BYC after constant j=±1A/cm² treatment

Overpotential Distributions in a Single SOC

Air/LSM-BYC/ScSZ/FL/HE/30%H₂O-H₂

Phase Inversion Process: Working Principle

\$\$\overline{1.25" Phase Inversion Cell at Different Stages

SOEC Performance Testing at PNNL

SOEC Performance Testing at PNNL

Separation of Current Collector from OE

Post-test Microstructural and Composition Analysis (USC#1)

Pacific

Cell#1

5	Atomic %	6	Atomic %	7	Atomic %	8	Atomic %	
0	59.75	0	62.70	La	48.52	0	66.33	
Bi	18.37	Bi	15.36	0	33.19	Zr	27.02	
La	11.01	Y	6.90	Sr	5.36	Sc	4.68	
Се	4.36	La	6.06	Zr	4.83	Bi	0.80	
Zr	3.24	Ce	4.31	Bi	4.25			
Y	2.53	Zr	3.63	Si	1.62			
Sc	0.74	Sc	0.74	AI	1.36			
Total	100.00	Sr	0.29	Mn	0.51			
		Total	100.00					
9	Atomic %	10	Atomic %	11	Atomic %	12	Atomic %	
0	59.77	0	58.00	0	55.92	Au	96.85	
Bi	25.98	Mn	20.00	La	21.43	Ag	3.15	
Y	10.04	La	12.75	Mn	15.69	Tota	al 100.00	
Ce	4.21	Y	3.49	Sr	3.58			
Total	100.00	Bi	2.95	Bi	3.38			
		Sr	2.81	Total	100.00			
		Total	100.00				UNIVERSITY OF South Carolina	

1	Atomic %	2	Atomic %	3	Atomic %
0	63.74	0	63.35	Ni	95.24
Zr	30.94	Zr	30.30	Ce	2.46
Sc	3.13	Sc	4.25	0	1.82
Ni	0.67	Ce	1.03	Zr	0.36
Y	0.61	Ni	0.62	Y	0.12
Ce	0.48	Hf	0.43	Total	100.00
Hf	0.43	Y	0.00		
Total	100.00	Total	100.00		

Comparing Cell 1 and Cell 3

221361 EXP 2022_06_22_N2 c9 USC#3 (lowest performance)

221361 EXP 2022_06_22_N2 c7 USC#1 (highest performance)

Cell has straight pillar-like columnar structure

Cell has deformed pillar-like columnar structure

221361 EXP 2022_06_22_N2 c9 USC#3 (lowest performance)

221361 EXP 2022_06_22_N2 c7 USC#1 (highest performance)

- Thicker electrolyte
- More Pores in YSZ
- Thicker AFL
- Poor OE/EL bonding

- Bi-rich layer at OE/EL interface
- Thinner electrolyte
- Smaller pores in YSZ
- Thinner AFL
- Weak OE/EL bonding

Cell has a continuous layer of gold particles layer

> Cell has a continuous light contrast layer on top of the YSZ

Layer on top of electrolyte	Atomic %
0	62.70
Bi	15.36
Y	6.90
La	6.06
Ce	4.31
Zr	3.63
Other	Bal.

Cell has little if any gold particles on top

Cell has no light contrast layer on top of the YSZ

Exploring Ways to Improve the OE Performance

- The R_p value of LSM-BYC baseline is around 0.64 Ω cm²
- The R_p increase to around 3.0 Ω cm² when adding ScSZ roughing layer between electrolyte and OE
- The R_p increase to 1.4 Ω cm² if embedding sliver mesh inside LSM-BYC
- The R_p slightly decreased (0.60 Ω cm²) when adding BYC layer between screen printed LSM-BYC and EL
- The R_p decreases to 0.30 Ω cm² when infiltrating 18wt% LSM into BYC scaffold

Infiltrating BYC NPs into LSM Scaffold Sintered at 1200°C/5h

Infiltrating LSM NPs into BYC Scaffold Sintered at 800°C/5h

650°C	BYC-20C- baseline (SP)	BYC-20C- 18wt%LSM	BYC-20C- 25wt%LSM	BYC-20C- 30wt%LSM
$R_o (\Omega cm^2)$	1.44	1.41	1.41	1.42
R _p (Ω cm²) (OCV)	0.64	0.30	0.10	0.15

Stability of BYC-20C-25wt% LSM

R_P and η of IL-BLF-OE (BYC-20C-18wt%LSM)

$(Bi_{0.75}Y_{0.25})_{1-x}Hf_xO_{2-\delta}(BYH)$ Series: XRD Patterns

$(Bi_{0.75}Y_{0.25})_{1-x}Hf_xO_{2-\delta}$ (BYH) Series: Conductivity Stability

Summary

- We have demonstrated the feasibility of BYC-LSM as a barrier layer free oxygen electrode for ≤650°C SOCs
- Phase inversion process has been demonstrated to produce hydrogen substrates with graded porosity and open structure
- Independent testing at PNNL revealed that a good BLF-OE has a Birich layer at the electrolyte interface; it also revealed that the BLF-OE has a weak bonding with the electrolyte
- New BYC scaffolded BLF-OE has shown ${\rm R_p}{=}0.1~\Omega cm^2$ at 650°C and the potential to address the bonding issue
- BYH series might be a better oxide-ion conducting phase

Next Step

- Fabricate 1.5 cm² BYC-scaffolded BLF-OE cells for independent testing at PNNL
- Continue to optimize BYH oxide-ion conductor for BLF-OE
- Develop ALD supercycles for SCT overcoat on LSCF-GDC
- Complete electro-chemo-mecho model

Milestone Status

	Milestones	Task	Planned	Actual	Verification method
1	Update Project Management Plan	1.1	10/10/21	complete	PMP submitted to DOE
2	Submit initial Technology Maturation Plan	1.2	12/09/21	complete	TMP submitted to DOE
3	Demonstration of barrier-layer-free OE performance: Overpotential: ≤0.15V@±1A/cm ² @650°C	2.2	03/31/23	complete	STEC and Report to DOE
4	Demonstration of ALD bilayer OE performance: Overpotential: ≤0.15V@±1A/cm ² @700°C	3.2	06/30/2023	40%	STEC and Report to DOE
5	Demonstration of optimized PI process conditions to produce quality porosity-graded open-channel HEs	4.1	06/30/2023	complete	Report to DOE
6	Demonstration of button cell (1.5 cm ²) performance specified in the Success criteria	5.1	12/31/2022	50%	Cell testing and Report to DOE
7	Demonstration of large-area cell (15 cm ²) performance specified in the Success criteria	5.4	09/09/2023	NYS	Cell testing and Report to DOE
8	A multiphysics model detailing OE failure mechanisms and modes	6.0	09/09/2023	70%	Report to DOE

Acknowledgements

- We are grateful to DOE-NETL SOFC program for the financial support.
- We thank the project manager, Dr. Evelyn Lopez, for many useful discussion and suggestions during our monthly meetings.

