

### **Progress in SOFC Technology Development at FuelCell Energy**

Hossein Ghezel-Ayagh

October 25, 2022

2022 SOFC Project Review Meeting Pittsburgh, PA





#### **Our Technologies Will Provide Optionality** as Energy Transition Evolves

#### Large Scale Grid Support

Bridgeport Fuel Cell Park, a 14.9 MW project located in Bridgeport, CT, is a utility-scale distributed power solution that revitalized a  $1\frac{1}{2}$  acre brownfield site and contributes to the economic redevelopment in the area.



Image: Bridgeport Fuel Cell Park

#### **Micro-Grid**

FuelCell Energy has built several utility microgrid applications, including a microgrid fuel cell at the University of California - San Diego, that supports critical building loads with independent capabilities.

#### **Distributed Hydrogen**

- Building hydrogen distribution platform in Long Beach to support Toyota's operations to fuel zero emission FCEVs and provide clean water.
- Will enable hydrogen transportation
- No pipeline infrastructure needed



- Fuel cells can separate carbon dioxide from an external exhaust stream, making the carbon dioxide easier to capture and sequester (approximately 90%) CO<sub>2</sub> capture, 70% NOx elimination).
- CO<sub>2</sub> can be either sequestered or used in applications such as food and beverage and agriculture.



Image: The Scotford Upgrader, a Canadian oil sands bitumen processor, is the site of a recently announced carbon capture project with FuelCell Energy





Image: UC San Diego microgrid enabled fuel cell platform



Image: **Rendering of Tri-Generation** Fuel Cell Project at the Toyota Facility at the Port of Long Beach, California



#### **SOFC Systems Development**

- Pathways to development of a low-cost, efficient, and reliable MWe-class SOFC power system towards commercial deployment in distributed generation applications:
  - Complete manufacturing analysis and planning to support efficient capacity expansion of 2<sup>nd</sup> generation cell and stack production processes to enable MW-class production rates at competitive cost
  - Design a multi-stack module to house low-cost Compact SOFC Architecture (CSA) stacks and serving as a building block for integration into MWe-class systems
  - Develop the conceptual process, electrical, and mechanical designs for a low-cost, highefficiency, and reliable MWe-class SOFC pilot system
  - Complete a Techno-Economic Analysis to forecast the system cost



Field Tests of FCE's 200 kW SOFC System at Clearway Energy Center, Pittsburgh, PA

| Highlight of Factory Tests + Clearway Site 4/9/2019 – 10/14/2020 |              |  |  |  |  |
|------------------------------------------------------------------|--------------|--|--|--|--|
| Total Hours Net AC Generated                                     | 5,895 hours  |  |  |  |  |
| Total Net Energy Output from System                              | 299,458 kW-h |  |  |  |  |
| Gross DC Efficiency Achieved                                     | 56% (LHV NG) |  |  |  |  |

### **SOFC Technology**





#### Solid Oxide Fuel Cell Technology Overview



Anode-Supported Solid Oxide Fuel Cell

Scale up of cells up to 1000 cm<sup>2</sup> active area

| Interconnect                                                                                                  |             | Solid Oxide Fuel Cell Structure |                                                                                                                                          |          |                 |  |  |
|---------------------------------------------------------------------------------------------------------------|-------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|--|--|
| Cathode Flow Field/Contact   Cathode   Barrier Layer   Electrolyte   Anode Functional Layer   Anode substrate |             |                                 | Cathode (10-50 µm) - screen printing<br>Electrolyte (5-10 µm)- screen printing<br>Anode support (up to 1mm) - tape casting<br>Mag= 750 X |          |                 |  |  |
| Interconnect                                                                                                  | Component   | Materials                       | Thickness                                                                                                                                | Porosity | Process         |  |  |
|                                                                                                               | Cathode     | Conducting ceramic              | ~ 50 μm                                                                                                                                  | ~ 30%    | Screen printing |  |  |
|                                                                                                               | Barrier     | CGO                             | ~4 μm                                                                                                                                    | <10%     | Screen printing |  |  |
|                                                                                                               | Electrolyte | YSZ                             | 5 µm                                                                                                                                     | < 5%     | Screen printing |  |  |
|                                                                                                               | AFL         | Ni/YSZ                          | ~8 μm                                                                                                                                    | ~ 40%    | Screen printing |  |  |
|                                                                                                               | Anode       | Ni/YSZ                          | ~0.3 mm                                                                                                                                  | ~ 40%    | Tape casting    |  |  |



#### **Cell Fabrication Process**







#### Automated QC / Stack Assembly



### **Typical 0.3 mm Thin Cell Performance**





 Performance of cell at high fuel utilization is strongly dependent on anode thickness

Reduction of anode thickness has further improved cell performance (2.34 W/cm<sup>2</sup> at 4.7 A/cm<sup>2</sup>)



#### Long-term Performance – Accelerated Testing



Verified long-term cell endurance test >1.5 years of operation with a 0.26%/1000h performance degradation with 3% cathode humidity throughout

# SOFC Stack Development





### **Compact Solid Oxide Architecture (CSA) Stack**



- Thinned components (cell + interconnect) to minimize stack material content (~0.5 kW/kg)
- Simplified unit cells with fewer components
- Designed for automated assembly

CSA stack design offers low material content for reduction in cost and superior thermal characteristics





Flexible structure offers compliance and robustness

# FuelCell Energy

### **Compact SOFC Architecture (CSA) Stack Platform**

| Droporty                | CSA Stack Scale |      |      | Commonte                  |
|-------------------------|-----------------|------|------|---------------------------|
| Property                | Short           | Mid  | Full | Comments                  |
| Cell count              | 50              | 150  | 350  |                           |
| Fuel cell voltage,<br>V | 42              | 128  | 298  | At 0.85 V/cell            |
| Stack power, kW         | 1.0             | 3.0  | 7.0  | At 0.29 A/cm <sup>2</sup> |
| Height, cm              | 9.1             | 21.1 | 44   |                           |

Short





New generation stack utilizes advanced thin and lightweight cell structure



#### **Recent Full Height Stack Test**



GT060081-0004



 Completed over 1800 hours of fuel cell operation on system gas compositions with good voltage stability and tight voltage spread (35 mV)



#### **Solid Oxide Applications**



**SOFC Stack** 



**Power Generation Stack Module** –Runs in power generation mode on a wide range of fuels, including natural gas, biofuels and hydrogen





**Electrolysis Stack Module –** Produces hydrogen from steam with power input





Energy Storage Stack Module – Alternates between power generation and electrolysis producing hydrogen from water

Versatile platform with multiple commercialization pathways



200 kW Power Generation System



*Electrolysis* 600 kg/day H2 from 1.1MW



Energy Storage System 1MW, 8MWh

# Cell And Stack Manufacturing





### **High Volume Cell Manufacturing**

- Utilize established baseline TSC3 cell design and manufacturing, (120 mm Ø) and anode-supported cell (0.3 mm thick)
  - Design for high-throughput manufacturing technologies for thin components taking cues from CD / DVD manufacture
- Manufacture high quality cells and stacks based on controlled documentation:
  - Drawing and Material Specifications
  - Work Instructions, and Incoming Inspection Plans
  - Continued emphasis on quality and Gage R&R for QC tools
- Identify and plan for resolving process gaps, equipment throughput bottlenecks, as well cost saving and efficiency improvements





### **Cell Quality Control**

#### **Cell Quality Control and Multiple Steps**

- Dimensional Inner Diameter, Outer Diameter (via Machine Vision)
- Dimensional thickness
- Electrolyte Integrity via leak check
- Visual for various cell defect types
- Cells individually serialized with QR coded tied to: cell history, input materials and QC data















#### Robotic work cell for:

- (a) Cell QC measure / leak test (Demonstrated >3 MW/shift/year throughput)
- (b) Interconnect sub-assembly / QC (Demonstrated > 3 MW/shift/year throughput)
- (c) Stack build (Demonstrated > 10 MW/shift/year throughput)



# Stack Manufacturing Approach

- Utilize high speed pick and place robot for efficient subassembly build, cell and component QC and precise cell / stack assembly
- 50 minutes to assemble a 350-cell stack



Manufacturing Expansion to Enable Sub-MW & MW-scale Systems

- Cell and stack fabrication yield improvements
- Automated screen printing on half-cells
- Multi stack conditioning
- Development of standardized work instructions
- Streamlined and efficient inventory management







**Robotic Sprayer** 



**Multi-Stack Conditioning Manifold** 

**Auto Screen Printer and Dryer** 

**Stack Transporter** 

Focused on new technology and automation

# SOFC Stack Module Design





#### **SOFC Module Development**

- Stack modules of various power ratings under development using stack arrays as building blocks:
  - 6-Stack SOFC Test Module
    - +  $40kW_{DC}$  Rated Power
    - Status: Receiving final components to build and test
  - 16-Stack Solid Oxide Module
    - 100 kW<sub>DC</sub> Rated SOFC Power
    - Minimum 150 kg/day SOEC H<sub>2</sub> Production
    - **Status**: Being built for an electrolysis demonstration at Idaho National Laboratory (INL)
  - 48-Stack Solid Oxide Module
    - 318kW<sub>DC</sub> Rated SOFC Power
    - Leverage design work completed from 16-Stack Module
    - **Status**: Being developed as a basis for the future
- Lessons from fabrication and testing of smaller SOFC modules will feed into the design of the MW Plant 48-Stack module



#### **Module Design and Component Development**

Full module

Stack Distribution Base

(cut-away)

• Developments from NextGen SOFC Module

**FuelCell Energy** 

- Process gases distributed to 6 stacks via multi-layered Stack Distribution Base connected to plumbing passing through sides of steel enclosure
  - CFD was used to achieve excellent flow and thermal distribution between stacks





Vessel received in Danbury



# FuelCell Energy

### **Air Distribution**

- Developments from NextGen SOFC Module
  - Air Distribution Tubes (ADT) protrude vertically from the Stack Distribution Base
  - Dead-ended perforated tubing modeled in CFD software to evaluate ٠ flow distribution along height of tube.

8.0%

6.0%

4.0%

2.0%

0.0%

-2.0% -4.0% -6.0%

-8.0%

- Performance of the **ADT** meets basic requirements of: ٠
  - Mass flow distribution •
  - Maximum allowable pressure drop ٠







### 40 kW Stack Module Build Status



#### **Upper Enclosure Insulated**





**Stacks Base Plate** 

#### Power Take Off Bus Bar Hardware



Two Stacks in Shipping Container

**Lower Enclosure** 

Components are fabricated for final assembly of 6-stack stack module



#### **16-Stack Module Design**

- 16-Stack Solid Oxide Module
  - Pre-assembled Stack Base Assembly maximizes access by production floor assemblers
  - Houses Stacks, Stack Distribution Base and accompanying I/O & power take-off hardware
  - Includes fitted insulation panels held together and secured by easily handled bolted sheet metal
  - Base Build Plate FEA determined appropriate material for low cost welded fabrication
  - Stack Base Assembly unit inserted into Module Enclosure shell via dolly and rails







- 48-Stack Solid Oxide Module for Large Scale Applications
  - Incorporate lessons learned from fabrication, assembly, and testing of the 40-kW stack module
  - Lifting access via standard ISO container corner blocks while providing option for forklift access
  - -Process gas header channels that run underneath the multi-layered base designed for adequate gas flow to the entire length of the base
  - -Designed for ease of factory assembly and future commercialization







Cut view of the full module

### **System Design**



**H** 

Cogene



#### SubMW SOFC System Development



- 50 kW (2014-2016)
- 1<sup>st</sup> Gen Stack
- Fuel: NG



- 200 kW (2017-2020)
- 1<sup>st</sup> Gen Stack
- Fuel: NG



- 250 kW Commercial Products
- CSA Stacks
- Muti-Fuel: NG, ADG, H2



#### 1 MW SOFC System Process Design



SubMW SOFC system design is used as the foundation for larger systems



### **Simulation Performance**





### **Repeating Core BOP/ Stack Module Block**



Repeating Core BOP/Module Blocks for MW-Class System Based on Design of SubMW Systems



### **MW SOFC Plant Design**



High Power Plant Availability Achievable Utilizing Repeatable Core Blocks

# Techno-economic Analysis



#### CSA Stack Cost Update @1 GWe/yr Production

 CSA Stack Factory Cost updated from 2019 estimate (DE-FE0026093) including the following modifications:

FuelCell Energy

- Cost sensitivity analysis of different parts containing nickel (part thickness and porosity) for high volume costing
- Updated re-designed non-repeat parts (NRP) cost including top and bottom end plates and air manifolds
- Advances in manufacturing automation
- Cost trade-off analysis for protective Manganese-Cobalt Oxide (MCO) coating processes
- Update of cost parameters subject to Inflation



#### **Cost Contributions Included:**

- Procured Parts
- Commodity Materials
- Direct Fabrication Labor
- Direct Assembly Labor
- Indirect Labor
- Utilities
- Capital Recovery
- Equipment Maintenance
- Consumables
- Equipment Commission and Test
- Overhead & Building

#### **Excluded:**

 R&D, sales and marketing, G&A, warranty expenses and taxes

Costing following DOE Methodology and Recommended Inputs



Yr2019 CSA-SOFC Stack Factory Cost Estimate for 1 GW stacks per Year



Stack cost per unit power produced:

- = \$122 \$/kWe DC (gross)
- = 133 \$/kWe AC (Net)
- < \$225 / kWe AC DOE cost target

# 58% of the estimated cost is due to material







#### Top 3 cost contributors by **Functional Area** are: 1) Cell Materials

- 2) Cell Fabrications
- 3) Repeat Components





# Wrap-Up





- 48-stack module design has been developed utilizing key components derived from configuration of existing smaller modules (6 and 16 stacks):
- 1 MW SOFC system design development is being matured from conceptualization to the next level of detailed engineering:
  - System concept was developed achieving efficiency >60% on Natural Gas fuel and incorporating capability for utilizing hydrogen fuel
  - Balance-of-Plant (BoP) key equipment were identified, and design data sheets were prepared
  - Preliminary 3-dimentional CAD model and system layout were developed to ensure reduced installation cost and ease of maintenance
  - Technoeconomic analysis has shown that at low annual volume production of one MW, a plant cost of <\$6000/kW is feasible meeting the DOE cost target for the first-of-a-kind 1MW SOFC system demonstration
- Factory cost of stacks at 1GW/year production is estimated to be \$122/kWdc.

# Thank You

Acknowledgement: Support and Management under DOE/NETL Projects DE-FE0031639 & DE-FE0031648

Dr. Shailesh Vora Dr. Patcharin (Rin) Burke



Our purpose: Enable the world to be empowered by clean energy

