A Highly Efficient and Affordable Hybrid System for Hydrogen and Electricity Production

Junsung Hong: Phillips 66
Meilin Liu: Georgia Tech

DE-FE0031975

23rd Annual SOFC Project Review Meeting
October 26, 2022
Acknowledgments

This material is based upon work supported by the Department of Energy [National Nuclear Security Administration] under Award Number DE-FE0031975.

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Outline

• Project Overview
• Project Objective
• Technical Approach
• Project Progress
 • Electrolyte Development
 • Air Electrode and Catalyst Development
 • Button Cell Performance
 • Powder Synthesis Scale up and Large Cell Fabrication
• Summary and Future Work
• Acknowledgement
Overview

- **Project Title:** A Highly Efficient and Affordable Hybrid System for Hydrogen and Electricity Production
- **Award No.:** DE-FE0031975
- **Project Timeline:** 09/27/2020 – 02/26/2024
- **DOE/NELT Program Manager:** Andrew O'Connell

Heli Wang (PI)	Junsung Hong	• Powder synthesis
David Ingram	Sarah Bushyhead	• Large cell manufacturing
Byunghyun Min	Keri Collins	• Stack fabrication and testing
Amin Baghalian		• System design and operation
Meilin Liu (Co-PI)	Nick Kane	• Cell materials development
Zhijun Liu	Humphrey Lin	• Catalyst development
Yucun Zhou	Xueyuel Hu	• Button cell evaluation
Jerry Luo	Gyutae Nam	
Conor Evans		
Phillips 66 SOFC R&D

Company Overview
• Diversified energy manufacturing and logistics company
• Portfolio includes Midstream, Chemicals, Refining, and Marketing & Specialties businesses
• Process, transport, store, and market fuels and products globally
• #29 on the Fortune 500 list

SOFHC Program
• Launched in 2010
• Proprietary high-performing materials
• Cost-effective fabrication methods
• Unique stack designs
• Fully automated control systems
• Full spectrum of cell/stack manufacturing and testing facilities
Fabrication and Testing Facilities

- >10,000 sq. ft. floor space
- 20+ fuel cell and stack test stations
- Fuel (H₂, CH₄, pipeline NG) processing and treatment
- Steam generation and control
- Large load banks and power supplies
- System instrumentation, control and communication
Project Objectives

• To design, fabricate, and demonstrate a robust, highly efficient, and affordable reversible solid oxide cell (rSOC) system based on a proton conducting electrolyte membrane for hydrogen and power generation.

• The 1-kW prototype system will meet the following technical specifications:
 • Operate the system in a real-world environment.
 • $\geq50\%$ electrical efficiency (LHV of H$_2$) at 0.5 A cm$^{-2}$ in fuel cell mode on H$_2$ at 650 °C.
 • $>85\%$ electrical efficiency (LHV of H$_2$) in electrolysis mode at \leq 650 °C.
 • Demonstrate the potential to <2/kg hydrogen.
Technical Approach

<table>
<thead>
<tr>
<th>Major Tasks</th>
<th>Action Plan</th>
</tr>
</thead>
</table>
| **Materials Development** | • Modify composition of state-of-the-art $\text{BaZr}_{0.1}\text{Ce}_{0.7}\text{Y}_{0.1}\text{Yb}_{0.1}\text{O}_{3-\delta}$ electrolyte
 • Develop air electrodes with high ORR/OER activities and excellent tolerance to H_2O and Cr-poisoning |
| **Cell Fabrication** | • Scale up powder synthesis to >1 kg /day
 • Fabricate button cells showing higher performance and good durability
 • Fabricate $10 \text{ cm} \times 10 \text{ cm}$ cells by low cost and scalable methods |
| **Stack Development** | • CFD assisted stack design
 • QC for stack components and assembly
 • Demonstrate high stack performance in both SOFC and SOEC modes |
| **System Demonstration** | • Design a 1.0 kW autonomous system with cloud-based control and data communication
 • Evaluate system performance and achieve efficiency, lifetime and cost targets
 • Techno-economic analysis to demonstrate $2/\text{kg H}_2$ |
Project Progress

<table>
<thead>
<tr>
<th>Timeline</th>
<th>Milestone (BP1)</th>
<th>% Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/31/2020</td>
<td>Electrolyte conductivity >0.01 S cm(^{-1}) and ionic transference numbers >0.95 at 600 °C.</td>
<td>100%</td>
</tr>
<tr>
<td>12/31/2020</td>
<td>Electrolyte degradation rate <2%/1000 h at 600 °C.</td>
<td>100%</td>
</tr>
<tr>
<td>03/31/2021</td>
<td>Air electrode with catalysts polarization resistance <0.2 Ω cm(^{2}) at 600 °C.</td>
<td>100%</td>
</tr>
<tr>
<td>06/30/2021</td>
<td>Air electrode with catalysts degradation <2%/1000 h at 600 °C under H(_2)O and Cr.</td>
<td>100%</td>
</tr>
<tr>
<td>07/30/2021</td>
<td>Scale up ceramic powder synthesis to > 1.0 kg per day</td>
<td>100%</td>
</tr>
<tr>
<td>09/30/2021</td>
<td>Button cells 1 W cm(^{-2}) at 0.7 V and 600 °C in fuel cell mode, 1.5 A cm(^{-2}) at 1.3 V and 600 °C in electrolysis mode, and a Faradaic efficiency of 95%.</td>
<td>100%</td>
</tr>
<tr>
<td>03/31/2022</td>
<td>Button cells degradation <2%/1000 h at ≤ 650 °C</td>
<td>100%</td>
</tr>
</tbody>
</table>
| 06/30/2022 | Go/No-Go Decision Point
10x10 cm\(^{2}\) cells with ≥70% roundtrip efficiency at 0.5 A cm\(^{-2}\), <2% per 500 h at ≤ 650 °C. | 100% |
Accomplishments to Date

✓ **Electrolyte**: Complete electrolyte development with conductivity $>0.01 \text{ S cm}^{-1}$ in Ar (3%H$_2$O), ionic transference numbers >0.95 and degradation rate $<2\%$ per 1000 h in cell operating conditions at 600 ºC

✓ **Air Electrode with catalyst**: Complete air electrode with catalyst development with a polarization resistance of $<0.2 \Omega \text{ cm}^2$ at 600 ºC in Air (3% H$_2$O) and a degradation rate of $<2\%$ per 1000 h at 600 ºC under the presence of H$_2$O and Cr contaminants for over 500 h

✓ **Button cell Performance**:
 • Fabricated high-performance button cells with the power density of 1.2 W cm^{-2} at 0.7 V and 600 ºC in fuel cell mode, current density of 2.0 A cm^{-2} at 1.3 V and 600 ºC in electrolysis mode, and a Faradaic efficiency of over 95%
 • Completed durability evaluation of the button cell for at least 1000 h with a degradation rate of $<2\%$ per 1000 h at \leq 650 ºC

✓ **Powder synthesis**: Established in-house powder synthesis capability $>1500 \text{ g/day}$

✓ **Large cell fabrication**: Fabricated flat, robust 10 cm×10 cm cells, which demonstrated 77% roundtrip electrical efficiency and a degradation rate of 1.3%/1000 h
Electrolyte Development

- $\text{BaHf}_{0.1}\text{Ce}_{0.7}\text{R}_{0.2}\text{O}_{3.5}$ (BHCR172, R = Yb, Er, Y, Gd, Sm)

- The ordered dopant structures could be beneficial to proton conductivity

 - The SAED pattern of BHCYb172 is characteristic of a typical cubic perovskite lattice

 - As the ionic radius of R increases, the peak positions shift to lower angles
Conductivity and Ionic Transference Number

- Trivalent dopants with an intermediate ionic radius can offer balanced lattice distortion and free volume, giving the highest conductivity.

- Y- and Yb-doped electrolytes show desirable conductivity of ~0.02 S cm⁻¹ and ionic transference number of >0.97 at 600 °C, making them good candidates for ReSOCs.
Chemical Stability Against CO₂ and H₂O

- **BHCYb172** showed high chemical stability against CO₂ and H₂O
 - Ba(Hf,Ce)O₃-based proton conductors are more stable in high concentration of H₂O than CO₂
 - Yb-doping positively affects the stability of the electrolyte materials

Understanding of the Enhanced Chemical Stability

• **Gibbs free energy (ΔG)** of the reaction between BHCYb172 and H₂O is higher than that of the Er- and Y-doped electrolytes.

• The superiority of Yb-doping in **suppressing surface CO₂ and H₂O adsorption**.

Chemical Compatibility with NiO

- Larger dopants tend to react with NiO at 1400 °C, forming BaR₂NiO₅ secondary phase.

- BHCYb172 demonstrates excellent chemical compatibility with NiO.
At 600 °C, SOFC: $PPD=1.21 \ W \ cm^{-2}$; SOEC: 1.3 V, current density $= 2.0 \ A \ cm^{-2}$

Roundtrip electric efficiencies of 84% and 79% at 650 and 600 °C, respectively

A low degradation rate of 0.8% /1000 h
Catalyst Development

- Catalyst was developed for PrBa_{0.8}Ca_{0.2}Co_{2}O_{5+\delta} (PBCC) air electrode by the solution infiltration process.
Enhanced Activity and Stability

- Catalyst-coated PBCC air electrode shows enhanced activity and stability against H_2O and Cr

![Graph showing temperature vs. resistance for coated and PBCC electrodes.](image)

![Graph showing resistance vs. time for bare and coated PBCC electrodes exposed to S430L.](image)
• The peak power density of catalyst-coated PBCC single cell is \(2.02 \text{ W cm}^{-2}\) at 650 °C, an over 35.5% improvement.
Enhanced Cell Performance and Stability

- Catalyst-coated PBCC single cell demonstrates a current density of -3.22 A cm\(^{-2}\) at 650 °C (22.4% improvement) and -1.99 A cm\(^{-2}\) at 600 °C (22.3% improvement).
- In SOEC mode, the single cell demonstrates good stability.
Flexural Strength of Proton Conducting Cells

![Image: A photograph of a sample with lines indicating stress and strain.]

![Image: A graph showing stress (σ) vs. strain (ε) for different cells.]

- **YZS cell electrolyte up**: Avg - 70 MPa
- **BHCYb cell electrolyte up**: Avg - 75 MPa
- **BHCYb cell electrolyte down**: Avg - 82 MPa

BHCYb cells meet the targeted 75 MPa value!
10cm x 10cm Cells

4-inch cell

H₂ (3% H₂O) / Air (20% H₂O)
Effect of Applied Load on the Cell

- With increasing applied load on the cell, the cell performance was enhanced.
- The reduced R_Ω and LF R_p indicate the improvement of (i) the contact between the interconnect and electrodes and (ii) sealing under the applied load.

650 °C
$\text{H}_2(10\%\text{H}_2\text{O}) / \text{Air (25}\%\text{H}_2\text{O})$

R_Ω decrease by contact

$\text{LF } R_p$ decrease

Higher Applied Load \rightarrow Higher Performance
Effect of Steam Concentration

- With increasing H_2O concentration (in H_2), the SOEC mode performance was improved.
- The presence of steam further hydrates the electrolyte, improving the ionic conductivity and kinetics.
The 1100-h EC mode operation of BHCYYb cells shows very small degradation (1.4%ΔV/1kh), demonstrating high durability and achieving the targeted specification (<2% per 500 h)!
Long-Term Testing of 10cm x 10cm Cells - Cell #2

The 1100-h EC mode operation of BHCYYb cells shows very small degradation (1.2%ΔV/1kh), demonstrating high durability and achieving the targeted specification (<2% per 500 h)!
Developed BaHf$_{0.1}$Ce$_{0.7}$Yb$_{0.2}$O$_3$ electrolyte with high conductivity and stability

Developed highly active and stable catalyst-coated PBCC air electrode

Developed high-performance and durable reversible cells based on proton conductors

- Peak power density of 1.2 W cm$^{-2}$ and electrolysis current density of 2 A cm$^{-2}$ at 1.3 V and 600 °C
- 1000 h operation at 600 °C with a low degradation rate of ~1% per 1,000 h

Fabricated 10 cm × 10 cm cells

- Roundtrip electrical efficiency of 77% at 0.5A/cm2, 650 °C
- 1000 h operation at 650 °C with a low degradation rate of ~1.3% per 1,000 h
Proposed Future Work

<table>
<thead>
<tr>
<th>Date</th>
<th>Milestone (BP2)</th>
<th>% Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/2023</td>
<td>Complete the stack design and components development</td>
<td>60%</td>
</tr>
<tr>
<td>05/2023</td>
<td>Complete the fabrication and evaluation of up to 3 short stacks (< 0.25 kW).</td>
<td>30%</td>
</tr>
<tr>
<td>08/2023</td>
<td>Complete 1 kW stack testing with ≥55% fuel cell at 0.5 A cm⁻², and >90% electrolysis at ≤ 650 °C, <2% per 1000 h degradation.</td>
<td>Not started</td>
</tr>
<tr>
<td>10/2023</td>
<td>Complete the system design and integration, complete a thermodynamic analysis.</td>
<td>Not started</td>
</tr>
<tr>
<td>12/2023</td>
<td>Complete evaluation of the 250 W system with ≥50% fuel cell efficiency at 0.5 A cm⁻², and >85% electrical efficiency at ≤ 650 °C.</td>
<td>Not started</td>
</tr>
<tr>
<td>02/2024</td>
<td>Demonstrate the potential to produce hydrogen at a cost of $2 per kilogram based on a cost of electricity of $30 per MWhr.</td>
<td>Not started</td>
</tr>
<tr>
<td>02/2024</td>
<td>Complete the establishment of a thermodynamic model to analyze the energy balance and global efficiency of the system.</td>
<td>Not started</td>
</tr>
<tr>
<td>02/2024</td>
<td>Evaluate 1.0 kW rSOC system performance at the relevant operating conditions and model: efficiency, durability, degradation, life of electrolysis cell.</td>
<td>Not started</td>
</tr>
<tr>
<td>02/2024</td>
<td>Complete a techno-economic analysis (TEA) based on test data on the rSOC system or components for the defined application</td>
<td>Not started</td>
</tr>
</tbody>
</table>
Thank you

DOE/NETL Andrew O'Connell
Heli Wang (PI) Junsung Hong
David Ingram Sarah Bushyhead
Byunghyun Min Keri Collins
Amin Baghalian

Meilin Liu (Co-PI) Nick Kane
Zhijun Liu Humphrey Lin
Yucun Zhou Xueyu Hu
Jerry Luo Gyutae Nam
Conor Evans

Q&A