

Cummins Reversible-Solid Oxide Fuel Cell System Development

Project ID: FE0031971

Lars Henrichsen

October 26, 2021

R-SOFC Project Objectives

Small-Scale Solid Oxide Fuel Cell Systems and Hybrid Electrolyzer Technology Development

Overview

- 1. 2 year Project (\$2M)
- Component Development to enable \$2/kg-H2 by reducing capital cost by 30%
 - 1. Cell/Stack
 - 2. Steam Ejector Fuel Loop
- 3. Project
 - 1. System Modeling
 - 2. CFD/Performance Simulation
 - 3. Experimental (Steam Ejector)
- 4. Deliverables

Phase 1

- 1. New Cell Design
- 2. Steam Ejector Design/Test

Phase 2

- 1. Prototype Cell Substrate
- 2. Steam Ejector Demo. in hot fuel loop experiment

1. NextGen Cell & Stack Design

Produce a metal substrate with higher performance and lower cost

2. Steam Ejector Concept Design

Demonstrate a steam ejector in a simulated hot fuel loop

Budget and Milestones

Complete
In Progress

Timeline and Budget

Project Start Date: January 1, 2021

Project Duration: 24 months

Total Project Budget: \$2,501,031

Total DOE Share: \$2,000,825

Total Cost Share: \$500,206

Total DOE Funds Spent*: \$1,334,149

Total Cost Share Funds Spent*: \$337,598

* As of June 30, 2022

Task	Milestone	Planned Completion Date	Verification Method	
2.0	M1: System Model Validated (TRL 3)	6/30/2021	System model calibrated to Baseline stack performance within 10% accuracy	
3.0	M2: Cell Model Validated	9/30/2021	Cell model validated with Baseline stack data	
4.0	M3: Steam Ejector Lab Tested (TRL 4)	11/30/2021	Steam Ejector demonstrated in lab test. Measure pressure, temperature, and flow rate	
5.0	M4: Cell Substrate Design Finalized	3/30/2022	Cell Substrate design optimized based on the cell performance model results	
5.0	M5: Make an Advanced Cell Substrate Prototype	6/30/2022	 Demonstrate Mass manufacture forming Low cost joining Robustness 	
6.0	M6: Steam Ejector Tested in Relevant Environment (TRL 5)	11/30/2022	Measure performance of the steam ejector in the hot test loop and compare with simulations. Measure pressure, temperature, gas composition, HX effectiveness and flow rate	

New Cell Design Footprint

- Increased active area for same footprint
 - 780 cm² active area
 - Improved \$/kW per cell
 - Fewer cells for same stack
 power improved \$/kW & kW/L

Cell Quality Checks

Measurement	Primary Variable of	Specification
	Interest	
Braze Leak Rate	Metal is braze joined hermetic	Upper spec limit (cm³/s)
Pressure Drop (fuel inlet	Metal is formed and aligned	+/- 10% from median
to outlet)	properly during braze	value (Pa @ 15 LPM air
		flow)
Visual Inspection	Permeable membrane does	Pass / Fail
	not have any defects	
Surface Roughness	Roughness of textured surface	Lower spec limit
	prior to coating deposition	(microns)
Coating Leak Rate	Electrolyte coating adequately	Upper spec limit (cm ³ /s)
	seals membrane, does not	
	have defects	
Flatness	Stress state of metal substrate	Upper spec limit (mm)
	with ceramic coating is	
	reproducible	

CFD Optimization of Cell Flow Field

- Iterative CFD analysis to optimize cell flow field
 - Minimize channel-to-channel mass flow variation
- Design of experiments approach
 - Multiple manifold designs
 - Varying numbers of input and output ports
 - Forward and reverse flow directions
- Best design flow variation
 - Air side: 7% variation across channels
 - Fuel side: 3% variation across channels

CFD Optimization of Stack Flow Field

- Cell to cell flow distribution through air stack is optimized by adjusting inlet/outlet header sizes, cell resistance
- Cell to cell flow distribution for fuel stack is minimal due to relatively higher resistance across fuel flow path

Air stack cell to cell variation 6.5% Fuel stack cell to cell variation < 1%

R-SOFC System Simulations

 R-SOFC system simulations using ejector performance curves from validated CFD model

Fuel cell mode

- Criterion: Steam/Carbon > 2.5 for 50 100% load
 - Threshold to avoid carbon formation and coking in system
 - Able to adjust Steam/Carbon ratio using water pump flow

Electrolysis mode

- Criterion: Target sufficient H₂ at stack fuel side inlet
 - Sufficiently rich to prevent Ni catalyst from oxidizing
 - Able to achieve even for 12 kPa Lift Pressure case

Steam Ejector Loop Demonstration

SOEC = Solid Oxide Electrolysis Cell

Steam Ejector Loop Demonstration

Objective

- From SOPO: "advance the steam ejector TRL by testing in a relevant environment ... using realistic gas compositions and temperatures"
- Advance to TRL 5

In Scope

- Test ejector with steam generation components
- High temperature steam/H₂/CO₂/CO (SOFC) or steam/H₂ (SOEC)
- Relevant SOFC & SOEC operation environment
- Verify ejector performance and CFD model for high temperature steam operation
- Impact of ejector on total system cost

Out of Scope

- Testing with full R-SOFC system no stack, reformer, air side components
- Ejector durability long range testing

Project Next Steps

- Budget Period 2 Tasks:
 - Task 6.0: Steam Ejector Loop Demonstration
 - Test ejector in full hot steam loop using all steam generation components
 - Utilize temperatures, pressures, and flow rates expected in a final R-SOFC application (TRL 5)
 - Task 7.0: Techno-economic Analysis (TEA)
 - Projecting R-SOFC costs in high volume production
- Submit Final Project Report

Q+A

