

Performance Improvements for Reversible Solid Oxide Fuel Cell Systems

Hossein Ghezel-Ayagh

2022 SOFC Project Review Meeting Pittsburgh, PA

October 26, 2022

Company Overview

NASDAQ: FCEL, Operating Since 1969

A leader in decarbonizing power and producing hydrogen through proprietary fuel cell technologies:

- Produce low- to zero-carbon power
- Capture carbon and greenhouse gasses while simultaneously generating power; Negligible NO_x or SO_x emissions
- Supply green or blue hydrogen power
- Store energy from intermittent renewables by converting excess power to hydrogen – then converting hydrogen back into power when it's needed or delivering to other applications

Demand for Clean, Reliable Electricity Driving Adoption of Fuel Cell Technology

FuelCell Energy FCE Leading Technologies Providing Energy Solutions

APPLICATION	CARBONATE	SOLID OXIDE
Power gen/CHP from natural gas, biogas, or H_2 blends	\checkmark	\checkmark
Power generation/CHP from hydrogen fuel		\checkmark
CO ₂ capture from platform	\checkmark	\checkmark
CO ₂ capture from external source while making power	\checkmark	
H ₂ /Power/Water production from natural gas or biogas	\checkmark	\checkmark
High efficiency electrolysis H ₂ production		\checkmark
Energy storage		\checkmark

TWO ADVANCED HIGH TEMPERATURE ELECTROCHEMICAL PLATFORMS ADDRESSING MULTIPLE APPLICATIONS

Solid Oxide Technology Applications

- The overarching goal of the project is to advance the high efficiency and low-cost Reversible Solid Oxide Fuel Cell (RSOFC) technologies for hybrid operation of water electrolysis as well as power generation, suitable for energy storage combined with capabilities for hydrogen production.
- The objectives of the project include cell performance improvements, stack durability, and optimization of system efficiency resulting in the design of a MW-scale energy storage system with no carbon footprint and an anticipated storage system cost of <\$1000/kW at 50MW/year manufacturing level, leading to hydrogen production cost of <\$2/kg H₂ (at \$30 /MWh electricity price).

Approach

- Improve RSOFC repeat units including cell, seal, interconnects, and coatings to increase performance and reduce degradation in cyclic operation.
- Improve stack thermal management and load following capabilities by design and verification testing of specialized power electronic equipment in combination with development of advanced system control strategies.
- Demonstrate a pilot RSOFC system incorporating cell and stack improvements achieved in the project.
- Perform commercial system design and costing to validate RSOFC storage system cost of <\$1000/kW at 50MW/year manufacturing level leading to H₂ production cost of \$2/kg.

- Hydrogen during charge cycle can be used to provide power during discharge cycle or can be exported to hydrogen user
- Waste heat from other sources can be utilized to reduce electric power consumption
- Expected round trip efficiency of ~70%
- The storage reactant is water, which is regenerated during power generation discharge – does not depend on limited quantities of lithium or cobalt
- Discharge duration is added by adding inexpensive hydrogen and water storage – so cost of storage capacity reduces significantly with longer duration
- Geological storage of hydrogen can provide weekly or seasonal storage

- Commercial MW-scale RSOFC Cost Targets :
 - Capital Cost Power \$1000/kW
 Capital Cost Energy \$150/kW-h
 Levelized Cycle Cost \$0.05/kWh-cycle

Cell Technology for Reversible Operation

Cell Fabrication

"TSC 3 Process "

Cell QC

Solid Oxide Electrolysis Cell (SOEC) Constituent Layers

Component	Materials	Thickness	Porosity	Process
Anode	Conducting ceramic	~ 50 μm	~ 30%	Screen printing
Barrier Layer	CGO	~4 µm	<10%	Screen printing
Electrolyte	YSZ	~5 µm	< 5%	Screen printing
Cathode Functional Layer	Ni/YSZ	~8 µm	~ 40%	Screen printing
Cathode Support	Ni/YSZ	~0.3 mm	~ 40%	Tape casting

Thickness (Z)

Measuring tool

FuelCell Energy

Long-Term Stability of Cell Operation in Electrolysis Mode

Steady State Operation in Electrolysis Mode at 1 A/cm²

- 16 cm² cell configuration consisting of stack features:
- cross-flow pattern
- flow fields
- electrode contact layers
- glass seals

Negligible cell degradation observed after >6 months of operation

Steady State Operation in Electrolysis Mode at 1 A/cm²

- 16 cm² cell configuration consisting of stack features:
- cross-flow pattern
- flow fields
- electrode contact layers
- glass seals

Repeat test of electrolysis cell after >1000 hours of operation showing no degradation

Accelerated tests representing >16 years of operation using short duration cycles

Reversible operation of a 16 cm² cell at ambient pressure (46 SOEC/SOFC cycles over 1,104 hours)

FuelCell Energy Cell P5284 Reversible Tests (Pressurized Electrolysis Mode)

Reversible operation of 16 cm² P5284 cell at 5 bar for electrolysis and ambient pressure for fuel cell operation

FuelCell Energy Cell P5299 Reversible Tests (Pressurized Electrolysis Mode)

Reversible operation of 16 cm² P5388 cell at 5 bar for electrolysis and ambient pressure for fuel cell operation

RSOFC Stack Development

Compact SOFC Architecture (CSA) Stack Platform

Bronorty				Commonte	
Property	Short	Mid	Full	Comments	
Cell count	45	150	350	Nominal count	
Fuel Cell Voltage, V	43	143	333	At 0.950 V/cell	
Electrolysis Voltage, V	58	192	448	At 1.280 V/cell	
Stack Efficiency, % LHV	74% / 100%	74% / 100%	74% / 100%	Electrochemical eff FC / EL	
Power, kW	0.87 / 2.7	2.8 / 9.3	6.7 / 21.8	At 0.25 / 0.6 A/cm ² (FC / EL)	
H2 production, kg/day	2	6.6	15	At 0.6 A/cm ²	
Height, mm (in)	91 (3.6)	211 (8.3)	440 (17.3)		

Operating conditions shown are representative of energy storage applications

RSOFC Modeling

Electrolysis Mode

- 700 deg C inlet reactant gases
- 50%H₂, 50%H₂O steam, 60% U_{steam}, flush air
- V_{cell} average =- 1.2 volt/cell
- Stack max temperature = 661°C •
- Stack min temperature = 627°C •
- Stack averaged temperature = 643°C •

Steam

Steam Concentration

outlet

contour-1

[C]

Power Mode

- 650 deg C inlet reactant gases
- 97%H2, 3%H2O fuel, 25% Uf, 30%Ua
- V_{cell} average =1.013 volt/cell
- Stack max temperature = 781°C
- Stack min temperature = 756°C •
- Stack averaged temperature = 777°C

Thermal Profile

Current Density

H₂ Concentration

High Volume Manufacturing

Automated screen printing, drying, cell QC, stack firing, and stack handling equipment

Robotic QC / Stacking Station

Expansion to 1 MW/year CSA Stack Production

Recent Full Height Stack Test

 Completed over 1800 hours of fuel cell operation on reformate followed by >2,500 additional hours of electrolysis operation

Cell Voltage (V)

50-Cell CSA Stack Test Results

50-cell CSA stack (DE-EE0008847)

Test Parameters

	Fuel Cell	Electrolysis
Current density	(Discharge) 0.2 A/cm ²	(Gharge)
	0.2 A/011	0.0 A/CIII
Time on load	3 hours*	1 hour*
Utilizations	25% H ₂ , 30% Air	50% steam
H2/Steam	~100%/0%	22%/78%
Concentrations	(approx.)	

- Completed 410 cycles overall in >2180 hours of operation
- Achieved a peak stack Round Trip Efficiency (RTE) of 80%

• 45 cell RSOFC stack GT060248-0032

	, i 0	
	Fuel Cell (Discharge)	Electrolysis (Charge)
urrent density	0.2 A/cm ²	0.6 A/cm ²
ime on load	17.25 hours	5.75 hours
Itilizations	25% H ₂ , 30% Air	50% steam
2/Steam	100%/0% (approx.)	22%/78%
oncentrations		

Cvclic Operating Conditions

1 hour transition times resulting in total cycle time of 24 hours

FuelCell Energy

45-Cell CSA Stack Tests

Internal short ended test after 800 hours 23

RSOFC Pilot System Demonstration

Pilot System Demonstration

- FCE has built and operated a brass-board >4 kgH₂/day SOEC system under a DOE/EERE project (DE-EE0007646)
- The pilot unit has the key balance-of-plant equipment similar to a commercial plant and is utilized to study the performance of SOEC stacks

Parameter	Value
Cell Voltage	1.285 V/cell
Current Density	Up to 1 A/cm ²
Operating Temperature	700-750°C
Operating Pressure	Up to 8.6 Bara (60 PSIG)
Flush Gas Inlet	Air
Flush Exhaust Composition	60% N ₂ , 40% O ₂
Inlet Composition	50% H ₂ , 50% Steam
Steam Utilization, stack	60%
Steam Utilization, system	88%

Nominal system operating conditions selected to achieve project objectives for efficiency with acceptable stack life

System Parameter	Performance
Stack Electrical Eff (HHV) ¹	115.2%
System Electrical Eff (HHV) ¹	107.4%
System Total Eff (HHV) ¹	92.2%
Electricity Consumption ²	36.8 kWh/kg
Thermal Consumption (kWh/kg)	5.9 kWh/kg
Total Energy Consumption ¹	42.7 kWh/kg

¹ Based on 98% rectifier efficiency, other BoP efficiency also included (motor efficiency, etc)

² Total electrical consumption includes stack, BoP, and high temperature thermal input

Pilot System Demonstration Key Features

- 125 psig (8.6 barg) max design pressure
- Accommodates 1x150-cell stack or 4x45-cell stacks with adapter
- Enclosure vessel is designed in accordance with ASME B&PV Code Section VIII Div. II, with internal insulation to allow a touch-safe vessel wall temperature

Mid Size CSA Stack

Stack Module Assembled

26

Solid Oxide Electrolysis Pilot System Demonstrated High Efficiency for H₂ Production

SOEC Pilot System Upgrade to RSOFC Operation

- The existing Solid Oxide Electrolysis Pilot System has been upgraded to RSOFC energy storage operation with capacity of up to 6 kW discharge and 32 kW charge:
 - Planned development of an advanced power conversion system including a robust algorithm for enhanced stack thermal management and transient load response, resulting in longer stack life and durability

RSOFC System Performance Targets

Updated Pilot Demonstration System Process Flow Diagram (PFD)

- Process Flow Sheet was completed
- Computer Simulation of the system was completed:
 - Steady-State Mass & Energy Balances using ChemCad simulation software

Electrical Equipment Upgrade

FuelCell Energy

150-Cell Stack for RSOFC System Demonstration

150-cell stack (GT60247-0005)

 150-cell stack was tested in electrolysis mode in the Pilot RSOEC System

- Furnace: 627 C
- Fuel: 50% H2O , 50% H2 @ 76.05 SLPM H2
- Air: 150 SLPM @ 40.5 A -- 76.05 SLPM H2O
- Usteam = 60.0%

FuelCell Energy **Preliminary Pilot System Commissioning Tests**

Technoeconomic Analysis

- RSOFC energy storage systems for integration with fossil fueled Electricity Generating Units (EGUs) was investigated (DE-FE0032032)
 - Increased operating flexibility and profitability as well as life extension of the EGU capital assets through energy storage and/or H₂ generation

Giga Factory Stack Cost Breakdown

Yr2019 CSA-SOFC Stack Factory Cost Estimate for 1 GW Stacks per Year

\$ 863 / stack (~\$130/kWdc output) at 160,000 stacks/year

RSOFC Cost vs Production Volume

Cost of Commercial Units Per KWhr

Wrap-up

- Develop Pilot RSOFC System design
 - Finalize System Commissioning
 - Perform case studies at operating conditions of interest
 - Perform parametric analysis to maximize round trip efficiency
- Perform Pilot System upgrade
 - Develop control algorithms
 - Incorporate hardware upgrades
- Conduct RSOFC system demonstration tests

Thank You

Acknowledgement: Support and Management under DOE/NETL Projects DE-FE0031974 & DE-FE0032032

Dr. Shailesh Vora Dr. Patcharin (Rin) Burke Sarah K. Michalik

Our purpose: Enable the world to be empowered by clean energy

