Development of Stable Solid Oxide Electrolysis Cells for Low-cost Hydrogen Production

Contract Number: DE-FE0032105

P.I.: S. Elangovan, **Co-P.I.:** Jenna Pike Tyler Hafen , Dennis Larsen, Joseph Hartvigsen, OxEon Energy Team Prof. Bilge Yildiz Group, MIT Dr. Olga Marina, PNNL

Support: NASA, DOE

23rd Annual Solid Oxide Fuel Cell (SOFC) Project Review Meeting Pittsburgh, PA October 25-27, 2022

DOE Project Manager: Drew O'Connell

Beyond Current Potential

Company Background

Utah, USA R&D/Manufacturing - 2017

- Office, laboratory, and manufacturing facility (24,000 ft²)
- NASA, DOE, DOD and commercial contracts
- Tape casting, cell and stack production, and testing
- End-to-end power to synfuels pilot plant

Solid Oxide Fuel Cell and Electrolysis Stacks

- Longest running solid oxide fuel cell & electrolysis group in world
- Only flight qualified, TRL 9 SOEC unit with active NASA demonstration on Mars
- 30kW/10kW and 20kW/10kW reversible SOC system test programs

Fuel Reformation and Generation

- Plasma Reformer H₂ or syngas from flare gas; digester gas conversion; clean-up bio-gasification
- Fischer-Tropsch Reactors Modular design for sustainable fuel production from H_2 and syngas

Project Objective

- A solid oxide electrolysis cell (SOEC) stack in a laboratory test bed
 - show improved performance over baseline stacks
 - robustness,
 - reliability,
 - endurance,
 - hydrogen purity, and
 - produce hydrogen at elevated pressure of 2 to 3 bar.

Project Goals

Improved performance over baseline

- Reproducibility and lower polarization by electrode modification
- Long term stability
 - projected lifetime of > 40,000 hours

Robustness

- Capability for thermal cycling of a stack
- Redox cycling of fuel electrode in a stack
- Production of hydrogen at elevated pressure

Robustness

Redox Tolerant Fuel Electrode - Background

Mars OXygen ISRU Experiment aka "The Oxygenator"

CO_2 to $CO + O_2$

First of any kind of demonstration of **In-Situ Resource Utilization (ISRU)** technologies to enable propellant and consumable oxygen production from the Martian atmosphere - Currently onboard Perseverance Rover

MOXIE is a ~0.5% scale prototype of expected final O_2 production rate

Flight Qualification

Baseline Performance

 21 consecutive stacks built with aerospace quality standards and traceability having a maximum baseline performance of 1.6 ohm-cm² dry CO₂ and 99.9%+ O₂ purity

Cycling Performance

- 3 stacks with 21 cycles of identical test procedure having varying cycle-to-cycle flow rates and final cycle averages of 10.11 g O₂/hr production and 99.8% purity Targets exceeded
- 1 stack to cycle 61 with >99.6% purity at a controlled production rate of 6 g/hr at 55g/hr feed

Structural Stability Testing

- No leak or significant performance change after 10kN crush testing
- Stacks tested to 25kN force with no crossover or external leakage
- Load to failure required 62.2kN (>30 margin of safety from design)

Shock/Vibe Testing

- Stacks vibrated at JPL and post vibe tested at OxEon
- No leak or significant performance change post vibe!
- No leak after shock testing, no significant performance change!

Cryo-Cycling

- Vibe stack cryo-cycled to -40°C (40 cycles), -55°C (3 cycles), -65°C
- Stack performance and purity unchanged in operational cycling post test

Cathode Challenge: Oxidation in dry CO₂

• Early MOXIE Test Stack:

- 15 operational cycles full thermal cycle with 120 min operation on dry CO₂
- Dry $CO_2 \rightarrow O_2$ production ~12% of initial

Dramatic degradation resulted from progressive oxidation front

Oxidation of Ni to NiO causes ~24% vol expansion, and in this case, irreversible damage to the electrode & current collector

MOXIE implemented recycle of produced CO to prevent cathode oxidation

Flight Test Success - First Ever ISRU Demonstration!

First 100 Sols!

Sol 5 "Aliveness Test" Mon Feb 22, 2021

- Sol 13 First run with Run Control Table (RCT)
- Sol 14 "Health Check" of heaters and compressor
- Sol 59-60 April 20, First Oxygen
 - Produced 5.4 g O₂ pre-dawn, peak rate of 6 g/h (2 A current)
- Sol 81 May 12, 2nd Oxygen
 - Nighttime (early AM) operation
 - Produced 7 g O₂, 8 g/h peak

Sol 100 May 31 3rd Oxygen

- Mid-day operation with lower atmospheric density
- Extended 8 g/h operation
- 11 Successful high purity (>99.6%) oxygen production runs on Mars to-date

First Run

Redox Tolerance for CO₂ Electrolysis (NASA SBIR)

Ni-based electrode

Button Cell: Redox Cycling and Long-Term Stability for CO₂ Electrolysis **©xEon**

Down-selected Composition Ni-Ceria based (N85)

- Full Redox Cycle = 12 hours off load with dry CO₂ only feed
- kept at 800 °C to nearly fully oxidize the cathode material (Ni metal → Nickeloxide)
- Load is reapplied
- No external reducing gas

STK-033 Partial and Full Redox Cycles

- Stack: Short (20 min) and long (12 hrs) exposure to CO₂
- Application of voltage full recovery of performance

Redox Cycle in Steam Electrolysis

Cell test at PNNL using Redox Tolerant fuel electrode:

- Steam oxidation overnight
 Application of 1.3 V
- No external H₂ feed
- Full recovery of performance

This Project

kW class stack: Redox Cycle in Steam Electrolysis

Stack test at Colorado School of Mines:

Stack in Lunar vacuum

Power supply problem

- Recycle H₂ stopped
- Current to zero
- Voltage dropped
- Restored power supply
- Stack performance recovery

NASA Funded (Tipping Point Project)

Electrode Improvement - DE-FE0032105

Focus: Address known/suspected degradation mechanisms

Integrated Approach to Addressing SOEC Degradation

No.	Degradation mechanism	Effect	SOEC component	Activity	Project Support
1	Cr transport from interconnect	Poisons active electrochemically sites	O ₂ electrode	Poisoning Effect (PNNL) Spinel Coating	DOE/NETL NASA Phase II-E
2	Perovskite composition instability over time	Catalytically inactive and electrically resistive grains/Non- catalytic secondary phases	O ₂ electrode / current collector	Composition modification	DOE/NETL NASA Phase II E
3	SiO ₂ migration from seal	Contaminates electrodes	O ₂ electrode Fuel electrode	Poisoning Effect (PNNL)	DOE/ NETL NASA Phase II E
4	Cation diffusion	Formation of more resistive phases	Electrolyte CeO ₂ barrier	Process modification	DOE/ NETL NASA Phase II E

Oxygen Electrode Interface Improvement

SDC Barrier layer

- Improve sinterability to lower sintering temperature
- Eliminate interface reaction between ceria and zirconia
- Additional modification underway

Standard SDC

>150 °C Reduction

Fuel Electrode Modification

Fuel Electrode Polarization

Post-sintering surface treatment by infiltration

 Fuel electrode polarization varies with type of treatment

Work done at Yildiz Group (MIT) Oxygen electrode surface modification by infiltration (MIT, OxEon -Non-Federal project)

INL 30 kW DOE Project

Stack Test

Interim Validation: 10 cell stack

Incorporating Barrier Layer/ Electrode Modification

Non-Federal Support

- Low degradation after ~ 800 hrs
- <1% / 1000 hr

Button Cell Operation at Elevated Pressure

- PNNL
 - Test fixture construction is complete.
 - SOP was sent out for review.
 - Fixture validation to begin after SOP is approved.
- Elevated pressure BC tests will start with PNNL house-made cells after SOP approval and system verification.
- OxEon Cell tests to follow

Oxygen Production (Seal Validation)

- High Purity O₂ on Mars
 - External to stack Mars ambient ~ 7 millibar
- Oxygen production at pressure (steam electrolysis test at CSM in vacuum chamber)
 - Stack in vacuum
 - H₂ production at 1 bar
 - O₂ production up to 3.6 bar via electrochemical compression

MOXIE scale stack (left) and demonstration system scale stack (right)

The effect of Cr impurities on the oxygen electrode in SOEC mode will be investigated.

- OxEon delivered cells to PNNL for testing
 - Two compositions of air electrode
- PNNL starting tests in presence of Cr
 - 1 cell of each set without Cr
 - 1 cell of each set with Cr

Cr barrier layer

Process development for improving spinel density

• Ongoing

Summary

- Multiple projects to provide complementary modification
- Redox tolerance validated for steam electrolysis
 - Oxidized Ni electrode recovery without the need for hydrogen in inlet
- Electrode materials modification validation in progress
 - Composition to improve thermochemical stability
 - Surface modification for improving catalytic property
- Investigation of poisoning effect ongoing
- Pressurized tests: steam electrolysis
 - button cells to begin shortly
 - Stack in Year 2

Thank you

S Elangovan elango@OxEonEnergy.com

This material is based on work supported by NASA through JPL's prime contract under JPL subcontract number 1515459. The authors would like to acknowledge the contributions of Michael Hecht (MIT, MOXIE Principal Investigator, PI), Jeff Hoffman (MIT, MOXIE Deputy PI), Jeff Mellstrom (JPL, MOXIE Project Manager), Carl Guernsey (JPL, SOXE Contract Technical Manager), Gerald Voecks (JPL, SOXE lead) in support of the SOXE Development Role on MOXIE.

NASA NextSTEP and Tipping Point Materials work was supported by NASA SBIR contract: 80NSSC19C0114 DOE-NETL DE-FE0032105

257 Riverbend Way North Salt Lake, UT 84054

OxEon Energy, LLC

info@oxeonenergy.com +1-801-677-300 oxeonenergy.com

PLASMA

Beyond Current Potential