

REDOX

Pacific Northwest NATIONAL LABORATORY

Low Cost SOFCs for Small-Scale • Bryan Blackburn (Co-PI) Distributed Power Generation • Stelu Deaconu (Co-PI) (FE0031976)

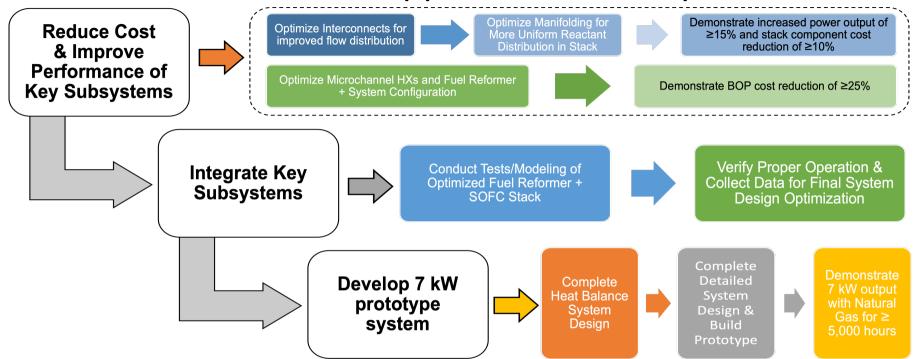
1

Agenda

- Project Goals/Objectives
- Technical Approach
 - Stack: Increased power and reduced cost
 - Key BOP: Microchannel HX/SR
 - System Design: smaller/fewer key BOP and industry best practice
- Stack Cost Reductions
- Microchannel HX/SR and Simpler System Design
- System Prototype Progress

Project Goal: Reduce cost of small-scale (5-25kW) SOFC power systems to $\leq $1,000/kW$ at lower production volume (e.g., ≤ 250 MW/year or 10,000 25-kW systems/year).

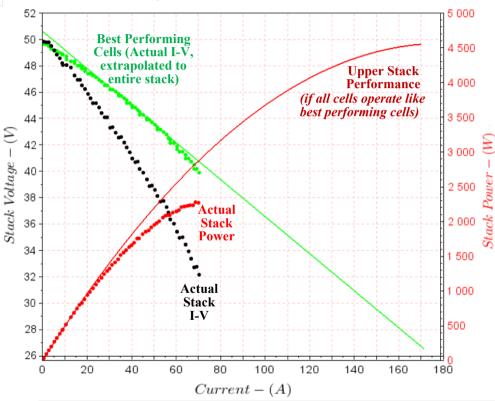
Small-Scale Power Systems & Prototypes


- Redox's Product Strategy
 - Single scalable system platform to address currently underserved markets (e.g., < 100 kW)
 - Daisy chain smaller units for larger implementations
- Key Subsystems (5-25 kW scale)
 - Stack hotbox, fuel processor, air delivery, electronics (control/power)
 - Stack hotbox is 25-40% cost
 - \$/kW \uparrow substantially as system size \downarrow

Project Objectives

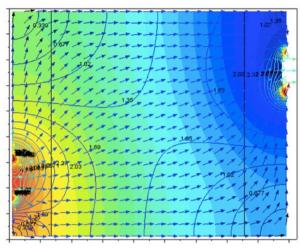
- ↓ cost of stack hotbox subsystem with optimized interconnects (IC) and manifolds
- ↓ cost of fuel processor and air delivery subsystems with optimized microchannel HX/SR and system config.
- Design, build, and demonstrate integrated, 7 kW system prototype running on natural gas for ≥ 5,000 hours
- Demonstrate a path to ≤ \$1,000/kW at production volumes
 ≤ 10,000 systems/year with a detailed techno-economic analysis

Technical Approach Summary

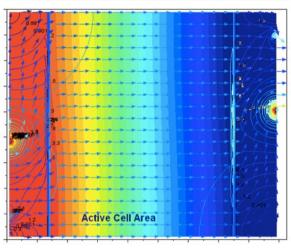


- Stack: improved thermal management and heat recovery & (ultimately) improved cell/stack durability
- HX/Fuel reformer: simpler manufacturing, improved thermal management, increased system efficiency
- TEA: Show clear path for meeting cost targets of \leq \$1,000/kW at \leq 10,000 systems/year 10/25/2022 REDOX POWER SYSTEMS LLC

Stack Cost Reductions from Improved Flow Distribution

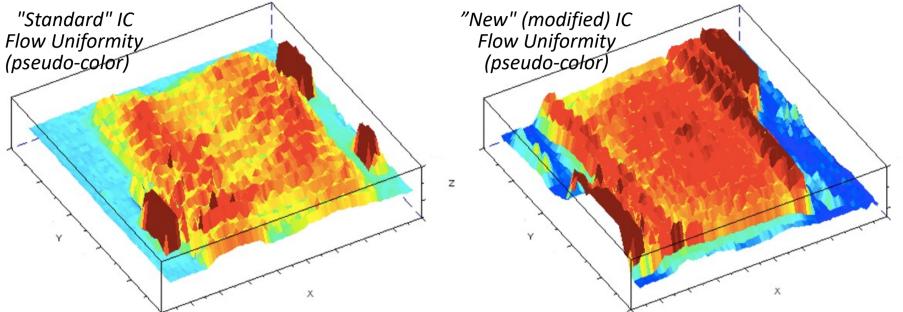

- Detailed analysis of past data showed
 - Non-uniform flow across stack and within repeat units
 - •Non-uniform temperature distribution
 - Results in leaving power on the table
 - green curve ("Best Performing") represents
 ½ of cells in stack
 - •Results in higher cost (more repeat units)

Nominally 2.5 kW Stack (Gen-1 cells)



Improved IC Flow Distribution: CFD Modeling

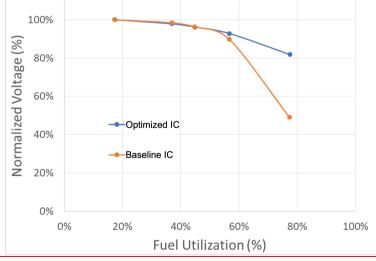
"Standard" Geometry



"New", Slightly Modified Geometry

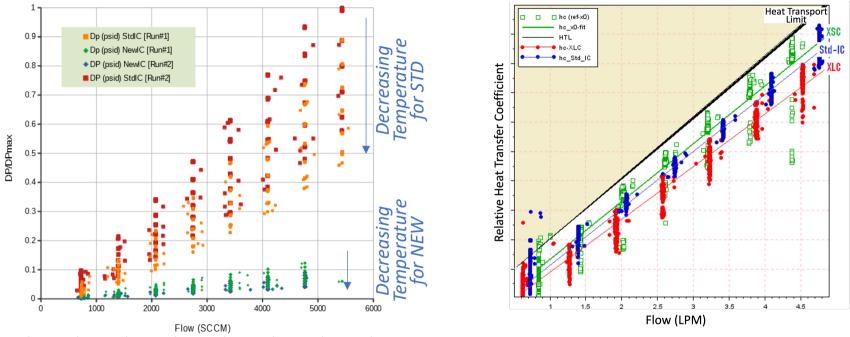
- Extra power through improved flow uniformity (fewer repeat units: \downarrow cost)
- Simulated pressure & velocity
 - >70% more uniform flow (relative flow in corners vs central region)
 - 55% increase in total interconnect flow at same available driving pressure
- Slight modification to internal manifold and inlet/outlet portion of flow field results in dramatically improved flow distribution

Improved IC Flow Distribution: Flow Visualization

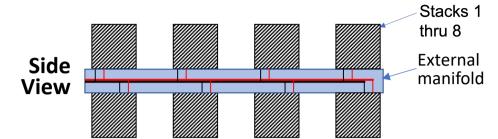


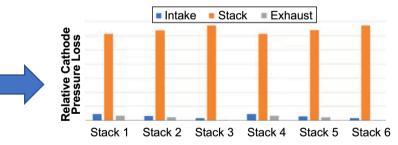
- Flow visualization set up and performed in accordance with principals of similarity analysis
- Video recordings were used to capture smoke entrained gas flow (at room temperature)
- Still images were then processed (e.g., remove background with now smoke) and used to create instantaneous light intensity maps due to light reflection from smoke particles
- Next step evaluate cell performance with modified IC

Improved IC Flow Distribution: Cell Tests


- Goal: demonstrate flow uniformity improvement with SOFC at 650 °C
- Using identical 10 cm by 10 cm cells
 - One cell tested with baseline interconnect
 - One cell tested with optimized interconnect
- To "observe" improvement in flow uniformity, current output was fixed while fuel utilization was varied
- The optimized IC showed a > 30% higher operating voltage (high U_f) than the baseline IC
 - Side regions of cell in baseline IC were starved of fuel, effectively reducing active area and increasing overpotential that leads to a lower $\rm V_{op}$
- Significant cost reduction simply from increased power (flow uniformity improvement)
 - Additional cost reduction from thinner IC

>30% higher power *vs* target: ≥15%


Interconnect Performance: Pressure Drop & Heat Transfer



- The stack pressure drop and convective heat transfer coefficient are important metrics for system design
- Differences in pressure drop vs flow rate for the "Std" and "New" interconnect designs
 → demonstrated up to 80% lower dP
- H-conv: additional optimization of the "new" IC led to improved heat transfer of 85% of HTL (labeled XSC), exceeding the target of 75%

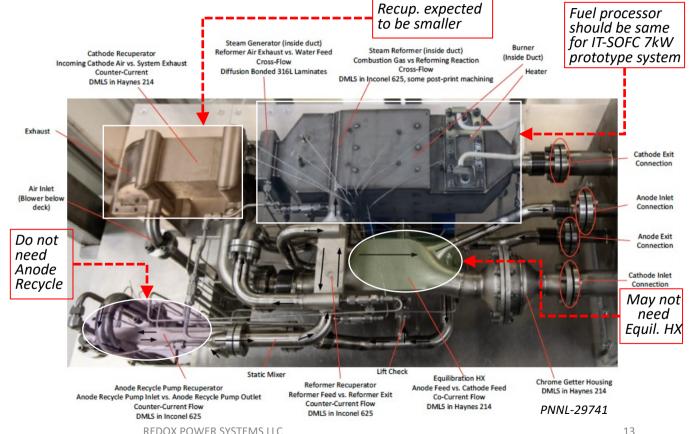
Stack Optimization: Internal / External Manifolding

- Optimized internal manifold
 - Improved pressure/flow distribution
 - Must obey known rules for sealing
 - Avoid increased manufacturing cost
- External Manifold
 - AVL's CFD modeling results for current iteration of stack manifold and optimized stack design shows acceptable balanced flow and pressure loss for stack assembly

Modeled at 6 stacks, similar for current 8 stacks (no change in # of cells)

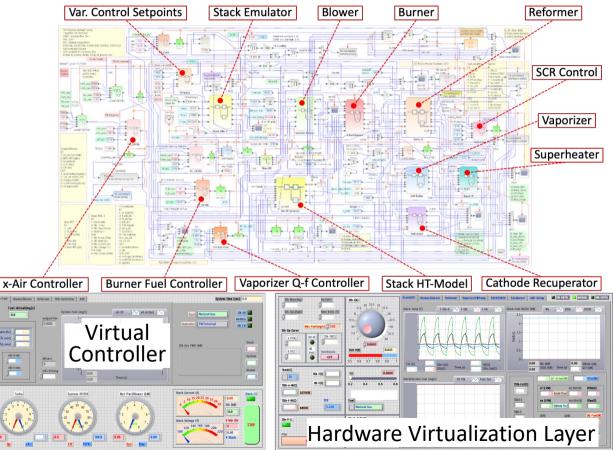
PNNL Microchannel Heat Exchanger/Steam Reformer

- High-Efficiency Microchannel HX
 - laminar flow, small hydraulic diameter channels (0.005- 0.040")
 - high surface area to volume ratio
 - high heat transfer coefficient (h)
- Compact, Fast Acting Steam Reformer
 - High-*h* HX quickly transfers heat into SR catalyst
 - A fast response reformer allows for better fuel load following
 - provides further enhancement to system efficiency by reducing the amount of excess fuel during high transient loading.
- Low volume HX and SR → more compact system, lower heat loss

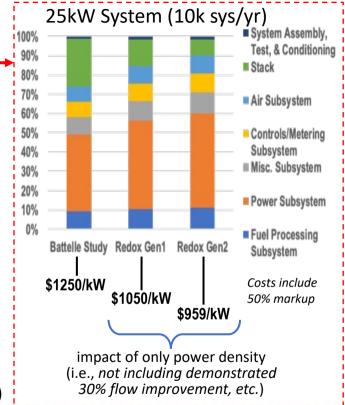


PNNL HX: same dP, 28 times less vol., 7% more eff.

Key BOP in PNNL SOFC Test Stand Platform


- Optimize HX/SR designs for \downarrow manufacturing cost (maintain performance)
 - Simplify component design (single pass)
 - Evaluation of simpler (more cost effective) manufacturing methods
 - Alternate materials (Redox SOFC operates at lower temperatures)
- System configuration that reduces cost
 - Reduced size or number of heat exchangers (including SR)

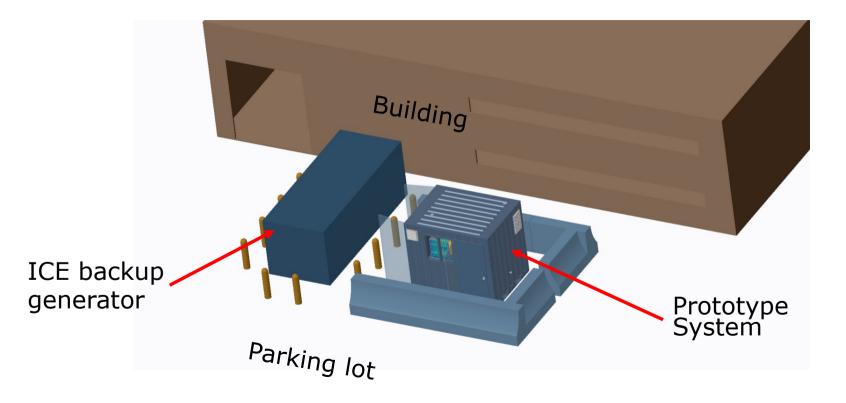
System modeling, optimization, and controls


REDOX POWER SYSTEMS LLC

- Single pass design realized
- Redox: Scilab/Xcos system heat balance/dynamics simulation
 - Used for overall system component design & controls optimization
- PNNL: flow-sheet based in ChemCAD (steady state)
 - Used for sizing fuel processor and cathode recuperator components
- Controls designed in Xcos
 - Initial implementation complete
 - Actual controller received and system simulator designed/built for hardware-in-the-loop testing
 - •Initial testing with virtual controller complete

TEA & Path to Target Costs (TMP)

- Government sponsored Battelle ('17) & LBNL/SA ('15) studies as cost benchmarks
 - IC cost decrease is ~50% (less material and \uparrow power density)
 - PNNL finishing up apples-to-apples comparison of microchannelbased fuel processor and cathode recuperator
- Additional savings from expected project outcomes
 - Lower operating temperature (600-650°C vs ~800°C)
- Smaller/fewer heat exchangers
- PNNL microchannel HX/SR (≥25% cost reduction)
- Lower stack endplate cost central manifold
- Off-the-shelf (solar type) inverter / power electronics
- •Other Efforts in support of technology maturation plans
 - High speed roll-to-roll (R2R) dev with ORNL (NFE-17-06781)
 - Same cell performance but reduced cost at < 5 MW/year (i.e., < 200 sys/yr)
- TCF award offers continued R2R development (NFE-20-08382)



7 kW Demo Test Site: Washington Gas Chillum Station

- Washington Gas has joined the project team and will host the demo site for the 7 kW prototype
- The prototype will be situated near a natural gas backup generator and feed power into the building

7 kW Demo Test Site: Prototype Layout

Prototype Power System Status

- System design complete
- Most of the critical/key/hard-to-get components received or ordered
 - Enclosure
 - Blower
 - Water pump
 - Instrumentation/controls
 - Stack raw materials
 - Desulfurizer
 - Power electronics identified (in stock)
- PNNL Microchannel Fuel Processor/cathode recuperator
 - Long-lead time components ordered
- Prototype Documentation
 - Build in progress
 - Controls nearly complete
 - Test plan mostly complete

Project Schedule Update

	<u> </u>																					_									
Project Year										Year 2										24 25 26 27 28 29					Year 3			-			
Project Month	1		3	4 5	_				10	_	_	14		16 1		_	9 20	_	_	2 23	_	_	5 26		28			-		_	-
Project (Calendar) Quarter Calendar Year	120	Q	1		Q2	202		Q3		0	24	-	Q5		C	16	2022	Q	7		Q	8	+	Q9		0	210 202		Q11	C	212
Calendar Year Calendar Month	-	+	2	2 4	5	_	_	8	0 1		11 12	1	2	2		_	022		0	10	1.1	1 12	1	2	2	4		_	8 9	11	
1.0 Project Management and Planning	12	11	2	5 4		0	1	•	9 1		11 12	1	2	3	4	5 0		•	9	10	, 11	1 12	- -	2	3	4	5 0		•	, <u>10</u>	
M1.1 Hold Kickoff Meeting		*	7	-	-		_	-	-	-		_		_				-		1	-	-	-			-					
2.0 Optimize Performance and Reduce the Cost of the Stack Hotbox Subsystem			<u> </u>		-				_			-															EGEND) .	-		
2.1 Reduce the Interconnect Cost and Improve Flow Distribution												_														-	* Mil				
M2.1 Interconnect flow distribution improved for ≥15% power gain, ≥10% lower cost											* 🔽																	/No-Go	Decisio	n Poir	.+
2.2 Optimize Manifolding for More Uniform Reactant Distribution in Stack																												estone			
M2.2 Manifolding Pressure drop reduced by 12%											mannaan		*⊻													1	-s ivili	Stone	Sub		
3.0 Reduce Cost of Critical Balance of Plant																															
3.1 Reduce Cost of Microchannel Heat Exchangers and Fuel Reformer																															
M3.1 Cost of Microchannel Heat Exchangers Reduced by ≥25%	1							*					>	- 🔽]																
3.2 Evaluate Performance of Optimized Microchannel HX and SR BOP																															
M3.2 Verify That Cost Reductions Do Not Reduce HX/SR Performance by More than 5%																•															
4.0 Complete Detailed Design for 7 kW SOFC Power System													m	ove	e af	ter	pro	tot	type	e bi	uila	d, ru	un t	test	at F	Red	ох				
4.1 Test Fuel Processor with Updated Stack																								(*)							
M4.1 Integration of Key BOP/Stack Subsystems and Checkout Tests Complete																		*									•*1				
4.2 Complete Detailed Design for 7 kW SOFC Power System																															
M4.2 Design, Integration, and Testing of Package, Controls, and Electronics Complete																				*											
G1 Go/No-Go Decision Point																					•										
4.3 Complete Build of 7 kW Prototype System																					-	-•									
M4.3 Prototype SOFC System Build is Complete With Successful Checkout Tests																									*	5	k	1			
5.0 Demonstrate 7 kW SOFC Power System in Relevant Test Environment	*	ETA	PN	NL f	uel	proc	ces	sor	'cat	tho	ode r	ecu	pera	ato	r sı	ıbsy	/ste	em	\rightarrow	AV	L				•└•		m	ninor	slip	pos	sible
M5.1 System Prototype Startup/Initial Characterization Successfully Completed											s at F																*				
M5.2 SOFC Prototype Operated for ≥ 5,000 Hours With Natural Gas Fuel						, , ,								,		., .															*
6.0 Complete Techno-Economic Analysis																															
6.1 Integrate Individual Cost Models for Small-Scale SOFC System																															
M6.1 Complete Integration and Update of Cost Models					*						►																				
6.2 Run Sensitivity Analysis and Refine Cost Projections Based on Test Data																															
M6.2 Demonstrate 25 kW SOFC system cost of ≤ \$1,000/kW at ≤ 10,000 sys/year																															*
10/25/2022					~~~		VCT			~																			10		

Acknowledgements

- Debalina Dasgupta NETL Program Manager for FE0031976 (Jason Montgomery — Previous NETL Program Manager for FE0031976)
- Dr. John Kasab AVL Mobility Technologies (formerly AVL Powertrain Engineering)
- Dr. John Hardy and Greg Whyatt PNNL
- Andrew Kent Washington Gas