Enabling Solid Oxide Fuel Cells for Integrated Energy Systems

Samuel Bayham

FWP-1022460

23rd Annual Solid Oxide Fuel Cell Program Project Review Meeting

Wednesday, October 26, 2022

Project Overview

Enabling Solid Oxide Fuel Cells for Integrated Energy System

- <u>Project ID</u>: FWP-1022460
- Project Funding:
 - \$2,450,000 from FECM
 - No Cost Share (Field Work Proposal)
- <u>Period of Performance</u>:
 - April 1st, 2021 March 31st, 2022
- <u>Project Participants:</u>
 - Universities:
 - West Virginia University
 - Georgia Southern University
 - University of Notre Dame
 - Carnegie Mellon University

- DOE National Labs:
 - Idaho National Lab
 - Sandia National Lab

Overall Project Objectives

- Enable development of SOFCs and SOECs in <u>integrated energy systems</u>
- Combine solid oxide fuel cell/electrolyzer with other fossil technologies to achieve <u>flexibility and</u> <u>resilience</u> while enabling <u>carbon</u> <u>capture</u>
- Determine <u>operability requirements</u> and develop <u>integration</u> and <u>control</u> <u>strategies</u>

Integrated Energy Systems

- Multicomponent
 - Fossil
 Nuclear
 - Renewable
- Integrated
 - Hybrids
 - Carbon Capture
 - Energy Storage
- Dynamic

U.S. DEPARTMENT OF

- non-dispatchable assets
- dispatchable assets
- Fossil generation resiliency
 hub for nation's power grid, enabling variable renewable generation

NATIONAL

TECHNOLOGY

Advantage of Hybrid Energy Concepts

Flexibility – Resilience - Emissions

- CCUS essential in future IES
 - 75% Reduction in CO2/MWh possible <u>before</u> CCUS
- Efficiency Critical
 - Lowers net CO2/MWh reduces carbon pollution by eliminating emissions
 - Reduces the size of CCUS system required to achieve Net Zero – substantial cost reduction
- Dynamic operability key to lower tons of CO_2/MWh

We need hybrid systems that can perform <u>efficiently at low</u> <u>load</u> and <u>not deteriorate</u> over many load cycles.

Technical Gaps

Overall Concept Feasibility?

Does the concept make sense from a mass/energy balance perspective? Priority of concepts?

Will the fuel cell or electrolyzer be able to handle load changes in a dynamic integrated energy system?

How can the plant turn a profit?

Can we control the plant?

How Much Cell Degradation?

Is there a business case to be made for such a plant?

How will the plant operate? How can we control it? How will it work on the electric grid?

Addressing Technical Gaps

Technical Approach

Systems Analysis

Analytically evaluate hybridized carbon conversion system configurations that incorporate SOFC/SOEC.

Apply knowledge of cell degradation to a wide range of operating conditions relevant to commercial systems (power and fuel production operation modes)

Design/Optimization of Hybrid Systems

Grid Impact on Hybrid SOFC System

Solid State Electrochemical Degradation

Use IDAES* platform to evaluate and strengthen value proposition for integrated energy systems that leverage hybrid carbon conversion technologies to produce electricity and hydrogen

Characterize operability and develop integration and control strategies to achieve the flexibility and resilience that SOFC-HCC systems must meet to be fully compatible with a dynamic power grid

*IDAES: Institute for the Design of Advanced Energy Systems framework

Systems Analysis

Analytically evaluate hybridized carbon conversion system configurations that incorporate SOFC/SOEC.

Systems Analysis

- NETL and INL collaboration to assess eight hybrid process concepts
 - SOC + Compressed Air Energy Storage (CAES)
 - SOC + Reciprocating Engine
 - SOC + Gas Turbine
- SOC + CAES chosen for additional study due to general applicability to utility-scale fossil fueled systems with large-scale energy storage capabilities

	C	oncept 1	C	Concept 2	C	oncept 3	C	oncept 4	(Concept 5	(Concept	6 (Concep	ot 7	C	oncept 8
Criteria		SOFC + Renewables		SOFC + Renewables + CO ₂ Source + Products		SOFC + NE		SOFC + NE + Renewables		SOFC + NE + Renewables + CO ₂ + Products		SOFC + Reciprocating Engine		SOFC + Gas Turbine		SOFC + CAES	
Reliability		5	•	7	•	7		7		10	•	7	•	7		•	7
Resiliency		7		7		10		10		10		7		7			10
Flexibility		7		5		5		5		7		10		10			10
Low Carbon Emissions		7		7		7		7		7		5		7		•	7
Fossil Fuel Efficiency		7		5		7		7		5		7		10		•	7
System Complexity		7		3		5		5		3		10	9	7			10
Carbon Utilization	•	1		10	0	1	0	1		10		1	0	1		0	1
Non-Power-Sector Markets		5		10		5		5		10		1	0	1		0	1
Water Use		5	0	1		3		3	0	1		10		10			10
State of Development	•	7		5		3		5		3	•	7	9	7		•	7
Geographic Limitations		7		5		3		3		3		10		10		0	1
Modularity		10		3		5		5		3		10		5			5
System Life		5		5		5		5		5	•	7	•	7		•	7
Decommission/End of Life		3	•	3	0	1		1	•	1		5	0	5			5
					w	orst	1		3		5		7		10		Best

Results are available as an NETL internal technical report

NATIONAL ERG TECHNOLOGY ORATOR

Systems Analysis

Systems Analysis

- <u>SOC + CAES hybridized concept</u>
- Meets system heat requirements at power ratio of ≈ 3.1 SOC:CAES
- Cost ratio of 1.4 SOC:CAES shows how high cost of energy storage is relative to power output ratio
- Screening analysis provides guidance on aspects to focus on in the follow-on techno-economic assessment
- Results are available as an NETL internal technical report

NATIONAL

Design/ Optimization of Hybrid Systems

Use IDAES* platform to evaluate and strengthen value proposition for integrated energy systems that leverage hybrid carbon conversion technologies to produce electricity and hydrogen

Goal / Technical Gaps

Design/Optimization of Hybrid Systems

SOC systems that produce electricity and $\rm H_2$

- Evaluate value proposition for producing electricity/H2
- Generate targets for cost reduction and performance improvement
- Analyze transient responses under rapid load change and low-load operation
- <u>Metrics</u>:
- Max achievable net profit over specific time horizons
- Traditional metrics LCOE, LCOH $_{\rm 2},$ NPV

Process Concepts	Power MW _e	H2 Capacity (kg/s)
NGCC	650	-
SOFC	650	-
NGCC + SOEC	650	5
rSOC	650	5
SOFC + SOEC	710	5
SOEC	-	5

Assumptions:

- SOFC: \$225/kW stack cost
- SOEC: \$105/kW stack cost
- Stack degradation rate: 0.2% / 1000 hr
- Hydrogen: 6.479 MPa, < 10 ppm H_2O
- Captures > 97% CO₂
- CO₂ transport and storage costs not included

Design/Optimization of Hybrid Systems

2015 CAISO, Power capacity factor = 0.48; H_2 capacity factor = 0.52

 $t \in T$

$$CF_{H_2} \cdot \pi_{H_2} + CF_{elec} \cdot \pi_{elec} - Costs(CF_{H_2}, CF_{elec})$$

 CF_{H_2} = Capacity Factor for Hydrogen π_{H_2} = Hydrogen Price CF_{elec} = Capacity Factor for Electricity Production π_{elec} = Electricity Price

Process/Market Analysis

Selling Price of H₂ = \$2/kg, Natural Gas = \$4.42/mmBTU

Low Electricity Prices	ERCOT \$0/ton Carbon Tax Low Prices Mean: \$32/MWh	
NGCC	M\$ -163.5/yr Capacity Factor Power: 0.19	
SOFC	M\$ -71.5/yr Capacity Factor Power: 0.92	
SOEC	M\$ 33.6/yr Capacity Factor H ₂ : 0.97	☆
NGCC + SOEC	M\$ -128.1/yr Capacity Factor Power: 0.02 Capacity Factor H ₂ : 0.98	
SOFC + SOEC	M\$ 19.2/yr Capacity Factor Power: 0.03 Capacity Factor H ₂ : 0.97	
rSOC	M\$ -3.7/yr Capacity Factor Power: 0.20 Capacity Factor H ₂ : 0.80	

Standalone SMR+capture = ~M\$ 80/yr

- Standalone power generation cases are highly unprofitable.
 - Electricity prices are too low to offset carbon capture costs.
- H₂-only systems are most profitable.

Process/Market Analysis

Selling Price of H₂ = \$2/kg, Natural Gas = \$4.42/mmBTU

High Electricity Prices	ERCOT \$100/ton Carbon Tax High Prices Mean: \$65/MWh
NGCC	M\$ -4.1/yr Capacity Factor Power: 0.87
SOFC	M\$ 116.9/yr Capacity Factor Power: 0.98
SOEC	M\$ -58.2/yr Capacity Factor H ₂ : 0.19
NGCC + SOEC	M\$ -35.4/yr Capacity Factor Power: 0.78 Capacity Factor H ₂ : 0.22
SOFC + SOEC	M\$ 132.1/yrCapacity Factor Power: 0.81Capacity Factor H_2 : 0.19
rSOC	M\$ 126.6/yrCapacity Factor Power: 0.87 Capacity Factor H2: 0.13

Standalone SMR+capture = ~M\$ 80/yr 7

- Efficiency of power generation is king
- Systems using SOFC technology for power are highly profitable
- Motivation for power/H₂ systems is rather low

Process/Market Analysis

Selling Price of $H_2 = \frac{2}{kg}$, Natural Gas = $\frac{4.42}{mmBTU}$

Bimodal Electricity Prices	CAISO \$100 Carbon/ton Tax Bimodal Mean: \$53/MWh
NGCC	M\$ -1.5/yr Capacity Factor Power: 0.61
SOFC	M\$ 96.8/yr Capacity Factor Power: 0.61
SOEC	M\$ 42.6/yr Capacity Factor H ₂ : 0.40
NGCC + SOEC	M\$ -9.2/yr Capacity Factor Power: 0.60 Capacity Factor H ₂ : 0.40
SOFC + SOEC	M\$ 171.8/yr Capacity Factor Power: 0.60 Capacity Factor H ₂ : 0.40
rSOC	M\$ 202.1/yrCapacity Factor Power: 0.61Capacity Factor H_2 : 0.39

Standalone SMR+capture = ~M\$ 80/yr 🥻

- rSOC and SOFC+SOEC achieve ~2X the profit of standalone SOFC
- Business case for power and H₂ systems is strongest when electricity prices are bimodal.

Breakeven Curves for Process Concepts

<u>Takeaways</u>:

- NGCC+SOEC is highest cost
- SOFC is far lower cost than NGCC
- SOEC preferred over SMR at low electricity prices
- rSOC preferred over SOFC+SOEC at low and high electricity prices.
- SOFC+SOEC is lower cost than rSOC between ~\$22-45/MWh.

Solid State Electrochemical Degradation

Apply knowledge of cell degradation to a wide range of operating conditions relevant to commercial systems (power and fuel production operation modes)

Goal / Technical Gaps

Solid State Electrochemical Degradation

<u>Goal</u>:

 Develop predictive tools to understand electrolyzer degradation under load changes

Approach:

- Adjust in-house Multiphysics and degradation models to accommodate reversible operation
- 73 µm 125 µm
- Adapt performance models for next generation materials sets
- Develop optical fiber sensors for distributed temperature and gas composition measurements

Solid State Electrochemical Degradation

- Planar cell model adjusted to include electrolysis/reversible operation
 - Adjusted gas diffusion models to accommodate wider range of gas compositions
- Impedance simulation capability added for subsections and for whole cell
 - Effect of overpotential and current fluctuation on the temperature distribution with a channel
 - Cross-flow versus counter-flow

Temperature transients along anode fuel channel when a ±0.4 A/cm² sinusoidal signal (200 s period) applied (750°C, 50%H₂/50%H₂O)

Solid State Electrochemical Degradation

- Modified button cell model to include reaction pathways with protonconducting electrolyte
- Completed button cell study differentiating impedance response due to electrode delamination from electrolyte vs. intergranular cracking within the electrode
 - Delamination affects ohmic, polarization resistances
 - <u>Cracking</u> affects only effects polarization resistance

Performance degradation of LSM/YSZ-based cell experiencing different levels of delamination or cracking

Solid State Electrochemical Degradation

- Ni redistribution simulations trend with literature
 - Time, temperature, steam content, and overpotential
 - Need to explain driving forces behind absolute values of observed changes
- Reduced atmosphere reaction chamber designed, constructed for testing anode symmetrical cells
 - Cells fabricated for measuring Ni redistribution under SOC conditions

Slope of Ni volume fraction moving away from the electrolyte when comparing different Ni/YSZ wetting angle models under different operating conditions as a function of time

70nmLSTO + 5nmSiO₂, >20 H₂ cycles

Solid State Electrochemical Degradation

Hydrogen Optical Fiber Sensor Probe:

- Response increased 5-10 times by sputtered PCO instead of dip coated
- LSTO-coated sensor lifetime increased by covering with a 5 nm SiO_2 capping layer

Bare 70nm LSTO, 3 H₂ cycles

DEPARTMENT OF

IH:

H₂ sensing response as a function of wavelength for LSTO-coated optical fiber at 700°C

Grid Impact on Hybrid SOFC System

Characterize operability and develop integration and control strategies to achieve the flexibility and resilience that SOFC-HCC systems must meet to be fully compatible with a dynamic power grid

Goal / Technical Gaps

Grid Impact on Hybrid SOFC System

<u>Goal</u>:

• Show the feasibility of highly-coupled IES to load follow and respond to a rapidly changing grid.

Approach:

- Develop adaptive control strategies for load following
- Develop <u>real-time</u> SOEC model to couple with the HYPER cyber-physical system
- HYPER = Hybrid Performance facility at NETL Morgantown

Real-time execution (within 5 milliseconds) needed to ensure real-time control

NATIONAL

TECHNOLOGY

NATIONAL ENERGY TECHNOLOGY LABORATORY

Grid Impact on Hybrid SOFC System

Interconnect (cathode half)

0

Real-time SOEC model for dynamic operability

- Multiphysics 0-D (lumped) SOEC model developed and validated against experimental data
- Non-isothermal model enables dynamic system analysis over a broad operating envelope
- Quantified effect of thermal conduction boundary on SOEC stack performance predictions
- Real-time execution has been demonstrated

Grid Impact on Hybrid SOFC System

- Test plan developed to characterize six
 control actuators
- Ramp system by 25% and 50% load turndowns
- 100% total hybrid power and progressively stepping down to 75% and to 50% of total hybrid power
- Fixed power split between GT and SOFC
- Fixed hybrid component sizes, which are based on the existing configuration of a cyber-physical SOFC/GT system in the Hyper.
- A fixed fuel type using humidified hydrogen.
- Similar type of work for new SOEC model in future years

80% SOFC:20% GT or 85% SOFC:15% GT

	Actuators	Control variables
1.	Auxiliary fuel valve	Gas turbine speed
2.	Pre-combustor fuel flow	Cathode inlet temperature
3.	Anode fuel flow	SOFC fuel utilization
4.	Hot air bypass valve	Cathode inlet air mass flow
5.	Bleed air bypass valve	Gas turbine speed
6.	Cold air bypass valve	Surge margin

Project Wrapup

Solid Oxide Fuel Cell – Integrated Energy Systems

Systems Analysis

• Completion and results dissemination of a TEA of a down-selected IES concept as identified in efforts completed in previous years

Solid State Electrochemical Degradation

- Planar SOC code created to simulate reversible cell load
- ID'd local physical, chemical, and/or electrochemical driving forces that cause varying degrees of nickel redistribution reported in the literature.
- Modify existing Ni-coarsening code under cyclical reversible operation.
- Demonstrate increased lifetime of the fuel gas optical fiber

Design/Optimization of Hybrid Systems

- Completed preliminary analysis and ranking of optimized process options using refined costing assumptions
- Completed development of dynamic models for highpriority IES components

Grid Impact on Hybrid SOFC System

- Successful demonstration of a 50% load change for SOFC-GT hybrid power system in 10 seconds possible without violating operability constrains.
- SOEC 0D model completed, 1D model in progress

Thanks for your attention

VISIT US AT: www.NETL.DOE.gov

@NationalEnergyTechnologyLaboratory

CONTACT: Samuel Bayham, Technical Portfolio Lead, SOFC-IES <u>Samuel.Bayham@netl.doe.gov</u>

O: (304)285-4178

Supplemental Slides

NATIONAL ENERGY TECHNOLOGY LABORATORY

Grid Impact on Hybrid SOFC System

- Dynamic 0D (lumped) SOEC model developed based on literature and technical resources from INL
- Model validation: geometry and electrochemical/thermal parameters from experimental data from actual SOEC stack testing at INL and the German Aerospace Center (DLR)
- Model able to predict experimental polarization trend and temperature variation

Code written in MATLAB/Simulink, programmed into OPAL-RT platform

Design/Optimization of Hybrid Systems

- Several IES process models were generated using the IDAES platform and a consistent costing approach.
- An optimization-based analysis framework was developed and demonstrated to obtain a <u>preliminary</u> ranking of initial process concepts under a base set of assumptions.

Assumptions: 2018 \$'s, \$4.42/MMBtu NG, \$70.3/MWh, \$2/kg H₂, 100% system availability, > 97% capture

System	Electricity Nameplate Capacity	Hydrogen Nameplate Capacity	Net Profit with Base Assumptions (\$/hr)	Electricity Cost (\$/MWh)	H ₂ Selling Price (\$/kg H2) Needed to Outperform Power Only Baseline at \$70.3/MWh	Electricity Price (\$/MWh) Needed to Turn Profit at \$2/kg H2
NGCC	650 MW	-	5008	61	-	-
NGCC + SOEC	650 MW	2.0 kg/s	(6511)	-	> 3.6	Negative
SOFC	650 MW	-	17879	43	-	-
SOFC + SOEC	650 MW	2.0 kg/s	(2113)	-	> 4.8	Negative
rSOFC	650 MW	5.0 kg/s	17291	-	> 4.6	< 29

- A Localized Marginal Price (LMP) dataset was identified for the combined process-market analysis that spans broad range of future scenarios 2035 ERCOT, carbon taxes \$0-\$250/ton CO₂.
- A 1st-principles planar, anode-supported, pressurized, air-fed, H₂-fed, non-isothermal SOFC/SOEC dynamic model was developed and exercised over a range of voltages and hydrogen production rates.

Breakeven Curves for Process Concepts

- Power only systems:
 - SOFC & NGCC are vertical lines.
 - SOFC is far lower cost than NGCC.
- Hydrogen only systems:
 - SMR & SOEC are lines with +ive slopes.
 - SOEC preferred over SMR at low electricity prices but can be much higher cost at high electricity prices.
- Integrated power and H₂ systems:
 - Breakeven curves are box-like.
 - NGCC+SOEC is highest cost.
 - rSOC preferred over SOFC+SOEC at low and high electricity prices.
 - SOFC+SOEC is lower cost than rSOC between ~\$22-45/MWh.

All cases > 97% Capture NG: \$4.42 per million BTU 100% overall capacity factor

Design and Costing Basis*

- Greenfield Plants, Midwestern US
- Hydrogen: 6.479 MPa, < 10 ppm H_2O
- All systems designed to capture > $97\% CO_2$
- CO₂ transport and storage costs not included
- 2018 \$'s
- 100% capacity factor⁺
- SOFC: \$225/kW stack cost
- SOEC: \$105/kW stack cost
- Stack degradation rate: 0.2% / 1000 hr (~7 yrs stack life)

* Theis, Quality Guidelines for Energy System Studies – Cost Estimation Methodology for NETL Assessments of Power Plant Performance, February 2021, (NETL-PUB-22580)

Process Concepts	Power Capacity (MW _{e,net})	Hydrogen Capacity (kg/s)			
NGCC	650	-			
SOFC	650	-			
NGCC + SOEC	650	5			
rSOC	650	5			
SOFC + SOEC	710	5			
SOEC	-	5			

Real-time SOEC model for dynamic operability

- Lumped model was extended to 1-D by considering 20 nodes along the length direction
- Current density distribution profile require iterations for convergence in one time step (5 ms)
- Preliminary results confirmed that the model can be executed in real-time
- Model validation using distributed temperature measurements and code optimization are in process
- Cyber-physical SOEC hybrid systems are in planning using the developed model and NETL's Hyper facility

IATIONAL

