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NETL SOC Capability Overview

: SOC technology is cost prohibitive due to long-term performance degradation
. Develop degradation modeling and mitigation tools to improve performance / longevity of SSEC

Systems Engineering and Analysis Performance Degradation Modeling Electrode Engineering
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e Degradation prediction tools

* Atoms-to-System scale bridging

e Experimental validation

* Advanced Gas, Temperature Sensors
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* Development and utilization of degradation modeling framework
* More degradation modes
e Expansion to SOEC and r-SOC operation
* New material sets
* More big data analysis
* Machine learning to develop more durable, higher performing electrodes

* Proton-conducting SOC materials
* Computational chemistry studies
* Experimental characterization

* Reversible SOC studies

e Systems configurations
* Experimental characterization

» U.S. DEPARTMENT OF
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* H.Kim, et al., “Effect of Microstructural Variability and Operating Condition on Cr-poisoning in Solid Oxide
Fuel Cell Cathode Using HPC Simulations”

e J. Liu, et al,, “Unconventional Highly Active and Stable Oxygen Reduction Catalysts Informed by
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Cell and Stack Degradation Modeling

Simulation-driven design of advanced SOCs
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Analyzing performance degradation N = [ATIoNAL
TL){Rscratory

e Simulations run on database of synthetic microstructure covering large matrix of
microstructural parameter combinations

 How do you decide what’s a good or bad electrode?

Need a single figure-of-merit that Lifetime energy production chosen.

cop’rures |n|hal. : erformance Presently: operation at a given current density,
and stability up to a given fime

Area = lifetime energy produced
[Wh/cm?]

Power [W/cm?]
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Cathode Feature Importance Ranking N=|tanionaL

TL TECHNOLOGY
LABORATORY

Each cathode feature's impact on lifetfime energy produced at 400 mA/cm?
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Machine Learning and Degradation N=[HnenaL
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e Use 11 initial microstructural values as “features” (inputs, known values for each
sample)

 Lifetime energy produced at 400 mA/cm? as “target” (outcome, value to be predicted)

Training dataset Update model weights

0 1. N Target
of1 0230081  0.23364 0.239156 Lifetime
pf23ratio 0789111  0.824911 0.868857 Tneran -
davgl 0.363655  0.372662 0.37807 :
QO dave2 0.385066  0.40092 0.416845 Predicted
S daves 0.413405  0.459561 0.525972 344'20<:> sEpRed
5 st 0138111 0.141968 ..  0.139824 ML modelin 346.03 330.5791
O std2 0.140301  0.144869 0.14958 —> ..
L a3 0.148107  0.168732 0.204666 igellpllgle 320.77 327.9687
hf1 0.000676  0.000379 0.000674
hf2 0.000648  0.000861 0.000811 . ‘g
h3 0.000678  0.000708 0.000945 Repeat until safisfied
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Machine Learning and Microstructure N=]mons:
Getting hi-res properties from cheaper, more available low-res techniques TL|iRBOkarory

Super-resolution F23ratio - 3 05%err
davgr | Lsseen
Porosity  0.21 62 1 ot
LSM/YSZ 0.8 2 081 std3 : 0.52%err
3D analysis  Davgl 445 g
Davg2 610 "o
Davg3d 555 0.4 1 1.0
TPB 4.35 - .
+ tortuosity, SA, etc 0.8 1
De-resolve x30 0o

Properties o B o 2 50

Rel. prediction error [%]
Porosity 0.26

(1.5 um voxels)

0.6

E
s o
LSM/YSZ 0.86 3. o 1
Convolutional Davgl 480 % : : zi;';:m
Neural & o davg2
Network Davgz 660 0.2 o davas
Davg3 503 e sl
PR 4.1 . s
+ tortuosity, SA, *00 02 0.4 0.6 0.8 1.0
e-I-C Actual (normalized)
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Machine learning vs. Percolation Theory  [N=]wrowa
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Trained ML models can provide more reliable microstructural
parameter input values for simulation studies
NN Regressor Percolation Theory
tpb - MAPE 2.123 % tpb - MAPE 13.402 %
0.35 - sal? - MAPE 2.082 % 0.35 5312 - MAPE 92.867 %
sall - MAPE 2.185 % sal3 - MAPE 93.998 %
saZ3 - MAPE 1.426 % 0.30 saZ3 - MAPE 87.470 %
0.30
0.25 - 0257
$ 0201 § 0201 Issues with
015 0.15 - interfacial areas =
0.10 0.10 1
0.05 0.05 A
0.00 ! # ! 0.00 T T /\l\ T T
70 80 90 100 110 120 25 50 75 100 125 150 175 200

Rel. prediction error [%] Rel. prediction error [%]
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Comparison: TPB Density N=[HnenaL
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NN Regressor Percolation Theory
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Predictions from Lower Quality 3D Data N=|AnonaL
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Putting it all together LABORATORY
— Original LTE (ground
_ hi-fi IDM truth)
3D analysis  Porosity 021

LSM/YSZ 0.8

Davgl 445

Davg2 610

———— — LTE (1% order,

+ tortuosity, SA, etc. # predicted from

: actual props)
Trcﬂned
Porosity 0.26 IDM ML
LSM/YSZ 0.86 n;riifl LTE (2™ order,
?/?’S‘%fjer »Dc’vgl =t » carlier # predicted from
Model Davo2 80 predicted props)

Davg3 503
TPB 4.1 cee
+ fortuosity, SA, et

etc.

Neural network regressor for
properties-to-performance
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Predictions from Lower Quality 3D Data
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Error analysis on 10,000 samples — Lifetime Energy Produced at 0.4 A/cm?
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T 340 | ° 40007
k™ o ®
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a 2% * 9 . 3000 A
£ %o O . 2 Mean abs. % err
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z il i .
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Rel. prediction error [%6]

Predicted from actual

Remains to be seen: How much the uncertainty increases over a
wider operational space with more degradation modes




Additional Degradation Models N=|NAToNAL
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Simulation of Mechanical Degradation Considering Microstructures LABORATORY

* Last year: Phase field modeling of mechanical cracking from thermal and redox cycling

* This year: model expanded to include O, pressure buildup in air electrode during SOEC
operation

Microstructure Oxygen pressure (atm)
— pPore 4F

POZ — 10, exp[ﬁnanode]
I- YSZ

| Pore
LSM

When c=0.5 um and y=1.75 Jm™2, critical inner oxygen pressure P5,=1.13*10% atm, and
critical overpotential n,,,,4.=237 mV

A 2%.  U.S. DEPARTMENT OF
M)

Modified Virkar model from Int. J. Hydrog. Energy 35(18)
9527, 2010.

nyE
Po, = >
2(1-v°)c

v: Interfacial energy  E: Young’s modulus
v: Poisson’s ratio c: Initial crack size




Additional Degradation Models
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Simulation of secondary phase formation

 Developed a general thermodynamic model of non-stoichiometric phases, and applied it
to SOFC systems, starting with LSM and LSCF.

e Computer program developed to apply the thermodynamic model to given sublattice systems.

 |Initially applied to simulate zirconate formation during sintering

Conditions (numbers)

Expressions

Site conservation (3)

Charge neutrality (1)

Compositions (3)

.VLM +y;l.2+ +.V1,[n3+ +y‘1’a =1

Yoz F Ve + Vot +Wa =1

y?ﬁ- +y3/a =1

30V 5 + Yy + Vo) F 20 + Vg ) +
Ayye = 655

Xa =

1
s,

y:ﬂ* +y;.|n3' +yslir11 +yi|n21 +y:-'ln3' +y:.|n4' +3}'3-‘,
Yia

= 3 T T 2 Z 2 x|
Yiawe Wy s Wyaas Pypae Wyae #3050

Total Compositions

Xsr

v vl ¥ 1
T T yunz+|+yH"3; +yzm4; HMD}; 3
Vi e Hsze Wze PWaae Pas 02

XMn =

U.S. DEPARTMENT OF
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Electrode Designh and Engineering

Building better performing, longer lasting electrodes
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SOC Electrode Design and Engineering N=[noNAL
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Objectives

* Enhancement of performance and longevity
* Materials engineering

Approach

* Microstructure engineering

DEVE©)[e

Benefits
e Cell/stack cost reduction
* Cell overpotential reduction

* Increased thermo-chemical/thermo-mechanical
stability DEVELOP tailored electrode designs

* Reduced cost-of-electricity and/or cost of hydrogen

DESIGN new materials and structures

DEPLOY in commercial SOC systems

U.S. DEPARTMENT OF




Simulating infilirated electrodes: Sub-volumes  [N=|unowe
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 Using ERMINE SOFC module in MOOSE platform for microstructurally resolved
infiltration (individual nanoparticles) to how infiltrated particle parameters impact local
electrochemical performance/degradation

3.0
@ Original
L0 -o- Original -e- Original Z :jm—g'gi : izi—g'gi
Sl ~%— LSM 0.02 -¥- LSM 0.02 — 2.5 1 e e
e oM 004  —a LM 0.04 S < LSM_0.06 < YSZ_0.06
0.95 A — - > LSM_0.08 » YSZ_0.08 ]
—< LSM 0.06 -<- LSM 0.06 g O LSM 0.10 m YSZ0.10 >

S 0.90 —»— LSM_0.08 -#- LSM_0.08 | 2.0
p —=— LSM_0.10 - < >
D 0.85 - - <
S © A
= — A
S 0.80 A ~ 15 -
D § e ¥ >
O 0.75 3 < =

0.70 A NS — 1.0 AA <

R v
0.65 SRRIT ®
~EVTAT TR
T T T ‘ r r 0.5 T T T T T
0 2 4 6 8 10 12 4 6 8 10 12 14 16
Current density (A/cm?) Pres (UM/um3)
\ - ¥ Comparing performance improvement on 2 selected LSM/YSZ subvolumes
- n“\jﬂ \Q’ wQﬁ )| when infiltrating different loadings of LSM and YSZ nanoparticles

U.S. DEPARTMENT OF
JENERGY *Open-source framework from Idaho National Laboratory that allows c_




Simulating infilirated elecirodes: Full cells [N=]arova
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* Usingin house DREAM SOFC code to optimize e
cathode performance by controlling infiltration P e
and backbone structure A e |
(LY _64-P_11) .
 Optimal catalytic properties for a given backbone = | |
composition/structure E 7 :
. Optimgl backbor?e composition/structure for given ﬁ """" (LY_‘;P_ZZ)
catalytic properties K ST
* Optimal lifetime performance based on § 55-P_10) ég 3551,11)
backbone/infiltrated particle degradation Z e L é
(LY_b5-P_00) (LY_55-P_01) YSZ Pa“i_c’l_‘?fi,?-‘?‘—“”"' (LY_46-P_22)
. . . 7 (LY_46-P_11)
Volume fractions: Particle size:
40:60 -1,0,1,2,3,4 (LY_?6-P_OO)
50:50 0 = Baseline
60:40 -1 = Coarser

1-4 = Finer Notation: Backbone LSM:YSZ-LSM/YSZ Particle size

I R EEEEEEEEEEEEEEEE———————————.




Infilirating LSC onto LSM/YSZ backbone

LY_46-P_00-baseline
LY_46-P_11-baseline

LY_46-P_22-baseline
LY_55-P_00-baseline

LY 55-P_11-baseline
LY_55-P_22-baseline

LY_64-P_00-baseline

. LY_64-P_11-baseline
' LY_64-P_22-baseline

LY_55-P_01-baseline
LY_55-P_10-baseline

1072 10" 00 10’ 10° 10° 10*
frequency (Hz)

U.S. DEPARTMENT OF
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il

® R, -baseline
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' Ryotar - LSC-infiltrated

NATIONAL
ENERGY
TECHNOLOGY
LABORATORY




Proton-conducting SOCs
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Expanding the degradation modeling framework’s material sets
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Proton-conducting SOCs can help lower operating temperatures, increase
operational stability, and don’t have a diluted H, stream

Materials needs:
e More active electrodes
* Electrolytes with higher o, higher H* transference number

* Less expensive thermal processing

SOEC, SOFC performance model code options created
for proton-conducting systems

 Model not fully calibrated due to lack of comprehensive
calibration dataset

High concentration

Pure H, cathode
steam anode

1l
Proton-conducting SOEC

F=- %% U.S. DEPARTMENT OF




Proton-conducting materials studies N=|panonas
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* Electrolyte studies:

cee e Defect Thermodynamics and Transport Properties of Proton Conducting Oxide Electrolyte
BaZr, Y, 05 (x<0.1)
e

et ° Experlmental measurement of conductivities and transference numbers of BaZr, Ce,Y, Yb

* Triple-conducting oxide studies for electrodes:

e  Computational study of H* transport in Ba(Co, Fe, Zr, Y)O, 5 based on [V,], cation arrangement, and
amount of Y substitution

* Experimental measurement of conductivities, H,/O, permeation, and transference numbers of
BCFZ/Y compositions

1xyz 3

Average H+ diffusion activation energy

04

Yttrium in H, ;,5BaCo 355Fe 375(Y/Zr) 550, 5

0.35

03

E, (eV)

U.S. DEPARTMENT OF 0.45
BCFZ (Zr=0.25) BCFZY (Zr=Y=0.125) BCFY (Y s)




Motivation: Reducing gradients in planar cells  [N=|vanona
—— . T L [FESHNoLoGy
Mitigating long-term degradation through advanced electrode design LABORATORY
0 Baseline 0.25 0.5 a0 |
'E 15} 0
1 Porosity 0.1-0.3 - =[}2(5)+[|1 0.5 g 2
R g | :
2 NifYsZ0.27-0.5 0.25 Ry :u_za(g)JrM? g o
3 NifYSZ 0.270.54 1.5 0.25 o zy1® _ h = - - - =
Ry [IES(L) +0.27 o
4 Ni0.250.370.50 0.25 0.27 0=z<L/3 Ll ML SRS .o
Ry ={u.35 L/3 =z <2L3 -l
05 2L/3=z=1L
Temperature gradient can be reduced il
by varying Ni:YSZ ratio from inlet to outlet

107 102 107 10° 10’ 10
time [s]




Additive manufacturing of SOC electrodes N=|M4mona
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Creating 3D gradients in composition, microstructure

* Automated aerosol spray deposition system built at WVU to fabricate SOC electrodes and electrolytes
« Feedstocks provide precursors with varying compositions, particle sizes
« Started with 4 feedstocks that could be pumped through spray nozzle

« Upgraded to in situ mixing system for wider range of compositions See

P
* Ongoing studies to deposit both electrodes, electrolyte, and barrier layers to support layer Josy, ‘;:fer.-
i
e System coupled with simulations to optimize long-term performance in planar cells K

Top Layer

100% LSCF 5 Micron Hydroxyl Modified PMMA Bottom Layer
70/30 LSCF/YSZ 3 Micron Hydroxyl Modified PMMA
50/50 LSCF/YSZ 1.5 Micron Hydroxyl Modified PMMA

SDC Barrier layer
YSZ

Spray deposited electrode layers with
varied electrode composition and pore
size on top of electrolyte substrate

N - = oo
WVUSRF 5.0kV 12.1mm x1.00k SE(M) 2/4/2022

Example layout of 5x5 cm? electrode with 3D
Note: YSZ used in demonstration for cost considerations gradients in composition and microstructure

U.S. DEPARTMENT OF




Strategic Systems Analysis and Engineering
Defining SOEC, SOFC, and R-SOC operation in the modern grid

5{& U.S. DEPARTMENT OF
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SOC Cell and Stack Cost Production Tool

N
T
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il

. . System Overview N Cost Basis
[ ] Stacks per year 20000 2019
Previous SOFC cell and stack production = —
0.34/Wicm2
Stack Pawer 5.40]) KW
L]
cost tool was expanded to include SOEC
= Lsbor
L L L] L] = Utilities
Lost Summary
roduction and additional cell geometries
Group  Description Annual Cost [$]  Cost per stack ($istack]  Cost per k% [#k'W)  Individual  Group = indirect
[Cell Costs |s 4636220 [ § 23181 $ 4295 | 84| ggesy
tiaterial [Interconnect Costs |3 9986239 | § 49931 3 9251 | w0z
[Total [5 14622459 [3 731[ 8 135.45 |
L
° Spreadsheet tool includes all necessa ry —— e e
Ulilities [Electricity B 25730W [ § A 267 | FITEA ITEEA |
Cost per kW Breakdown
. Equipment [s 2,000,060 | § W00.00 [ § 853 | TE4] 1370 s300.00
Capital |Building s 1,600,048 | 3 2000 5 14.82 | 6.1
Total [s 36001088 180 [ § 3335 | w000
o sms
Cell Fabrication Maintenance 3 70002 § 35008 0.65 0.27% R
$200.00
. . Call Fabrication Comsumables | $ 1,000 | § 0| 013 0.05% —
Cell Fabrication DAGC $ 2800 [ § K 0.03 0.01% o
* Raw materials, equipment, energy, etc. N 1L
Indirect labor 3 562,464 | 3 28123 521 21% mLabor
Overhead $ 1729393 | § 3647 | § .02 6.5% s100.00 it
Total § 2,392,660 & 120 [ 22.16
L] L] L] L] $50.00
[ Total Production Cast [s 2630651 ¢ 136] ¢ 243.69 |
ensitivity studies can be conducted on e e :
SOFCs and SOECs
Call Voltage. [0 ﬁv [stacks per year I 20,000 |
Cell Current Dersity 0.4] o’ |capacity per year | 107.95| Muwear
. . Power Density 0 34} lern®
Cell Side Length 1B|cm Yields
* Total production, materials costs, etc == e —
) ) . ‘clive Area Percaniage 307 [Completed Cell Yield | .72 End plate
Active Area 2025 ern®
Power per Cell B8.85[ W
Total Stack Material Cost
- - - - I § EENA
Cells per Stack. 80
. Cell to Cell Resistance. A00E -04| Ohm-crm®
Stack Voltage Loss 316V
Fatio of average cell
valtage to nomical cell 98, DD% .
Stack Power 5.40] kW
a Va I a Cell Lagers NI-YSZ Porous Anode ~ 600 ym
Layer aterial Thickness [u{Porosity Density (glem3) [Weight per Cell ({Weight wf Lo: Cost per Cell |Cost per Stacl Dense YSZ Electrolyte ~ 8 um
Cathode contact |ayer LSCF 6.30] 128 131 350 LSCF Cathode ~ 30 pm
Cathode current cellzctor | LSCF 3 05| 31 2 —s =
Cathode active layer LSM-YS2 21 77| 24 1 Cell Layers Interlayer ~ 5 pm
Cathode interl ayer GdSm 76| 0.7
Elzcirolyte BYS2 EE| 01 0
. . Anode active laper MNi-YSZ L 53| 259 3l
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Newly released reports
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* Techno-Economic Analysis of Integrated Gasification Fuel Cell Systems (Report DOE/NETL-2022-3250) and
Techno-Economic Analysis of Natural Gas Fuel Cell Plant Configurations (Report DOE/NETL-2022/3259)

* Updated technological pathway studies for ~550 MW IGFC and NGFC configurations considering carbon capture
and storage, different gasification technologies, and pressurized operation provides targeted research guidance
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NGFC Pathway Study
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Ongoing System Studies N=|NanionaL
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* Techno-Economic Analysis (TEA) of H,-fueled SOFCs

* Preliminary TEA of R-SOC System configurations, considering fully R-SOC stacks vs.
separate SOFC and SOEC stacks
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* Integrated degradation modeling framework expanded with more materials, more
degradation modes, more operating modes, more data analysis

e Synthetic microstructure database, microstructural analysis tools are available for use

* Access to degradation framework available through collaboration
* Help interpret impedance data
* Move beyond correlation
* Get recommendations on how much your cell can be improved
* Workshop for SOFC Program partners anticipated in Spring 2023!

* Additive manufacturing and infiltration capabilities developed and available to create
electrodes with engineered gradients

e Systems analysis tools and reports have been released. Look for upcoming reports
exploring reversible systems.
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1. H.Kim, et al., “Effect of Microstructural Variability and Operating Condition on Cr-poisoning in Solid Oxide

2. Fuel Cell Cathode Using HPC Simulations”

3. J.Liy, et al., “Unconventional Highly Active and Stable Oxygen Reduction Catalysts Informed by
Computational Design Strategies”

4. ). Tenney, et al., “Additive Manufacturing of Anode-Supported SOFCs through Aerosol Deposition”

5. T.Yang, et al., “Numerical Study to Optimize the Microstructure of an LSM/YSZ Backbone for Nanoparticle

6. Infiltration”

7. W. Epting, et al., “Rapid Assessment of SOC Electrode Degradation Using Computer Vision and Machine
Learning”

8. Y. Chen, et al., “Sr Surface Segregation & Grain Boundary Degradation of LSCF/SDC Oxygen Electrode

9. Operated in Both Fuel Cell and Electrolysis Mode”

10. Y. Fan, et al., “Nanoparticles Infiltration in Air Electrode of LSM-YSZ/YSZ/Ni-YSZ Cells to Improve
Performance and Mitigate Performance Degradation under Reversible SOFC/SOEC Operation”

11. Y.L. Lee, et al., “Defect Thermodynamics and Transport Properties of Proton Conducting Oxide BaZr1-
xYx03-6 (x<0.1) Evaluated Based on Density Functional Theory Modeling”

12. Y. Lei, et al., “Modeling Ni Redistribution in the Fuel Electrode of Solid Oxide Cells”

13. Y. Mantz, Y.L. Lee, “Surface Energies of LaMnO3 High-Index Surfaces Obtained from Density-Functional
Theory”
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1. T.Yang, etal., “Multiphysics modeling of SOFC performance degradation caused by interface delamination
and active layer cracking,” International Journal of Hydrogen Energy (accepted 9/2022)

2. VY.L Lee, et al., “Defect Thermodynamics and Transport Properties of Proton Conducting Oxide BaZrl-
XYx03-6 (x<0.1) Guided Based on Density Functional Theory Modeling,” JOM (accepted 9/2022)

3. Y. Lei, etal., “Modeling Ni redistribution in the hydrogen electrode of solid oxide cells through Ni(OH)2
diffusion and Ni-YSZ wettability change,” Journal of Power Sources 545, 231924, 2022.

4. Y. Chen, et al., “Space charge layer evolution at yttria-stabilized zirconia grain boundaries upon operation
of solid oxide fuel cells,” Acta Materialia 237, 1188179, 2022.

5. T. Hsu, etal., “High performance finite element simulations of infiltrated solid oxide fuel cell cathode
microstructures,” Journal of Power Sources 541, 231652, 2022.

6. R.Jacobs, et al., “Unconventional Highly Active and Stable Oxygen Reduction Catalysts Informed by
Computational Design Strategies,” Advanced Energy Materials, 2201203, 2022.

7. VY.lJi, etal., “Thermodynamic models of multicomponent nonstoichiometric solution phases using internal
process order parameters,” Acta Materialia 23, 117462, 2022.

8. J.H. Duffy, et al., “Surface and Bulk Oxygen Kinetics of BaCo0.4Fe0.4Zr0.2-XYXO3-6 Triple Conducting
Electrode Materials,” Membranes 11(10) 766, 2021.
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Additional SOC Efforts
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