Pilot-Scale Testing of the Hydrophobic-Hydrophilic Separation (HHS) Process to Produce Value-Added Products from Waste Coals (FE0031711)

by

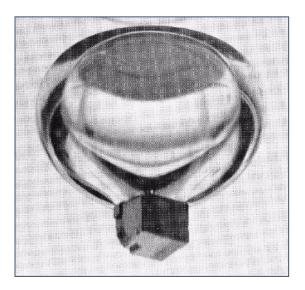
Roe-Hoan Yoon,¹ Aaron Noble, and Stan Suboleski Virginia Tech

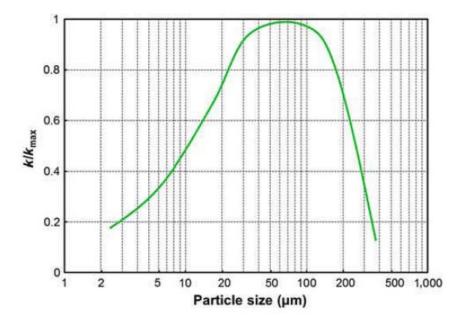
ryoon@vt.edu; 1-540-231-7056 (phone)

October 27, 2022 2:15-2:45 pm

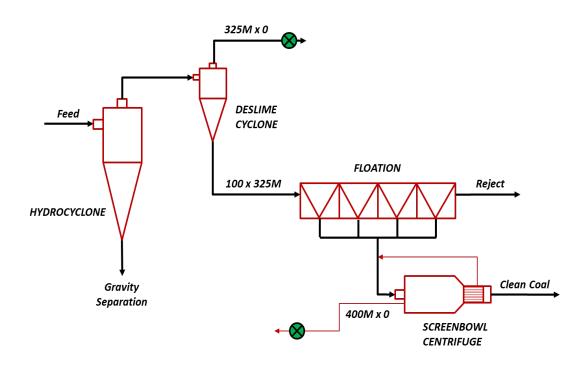
Project Overview

- Funding
 - DOE
 - Cost Share


\$1,445,486 \$361,371


- Objective
 - To produce low-ash feedstocks for high-value carbon products
- Prime
 - Minerals Refining Company (MRC, Inc.), Richmond, VA
 - Dr. Stan Suboleski, Pl
- Sub
 - Virginia Tech
 - Roe-Hoan Yoon, Co-Pl
 - Aaron Noble, Co-Pl
- Project Manager
 - Christian Robinson
 - End date
 - December 31, 2022

Flotation

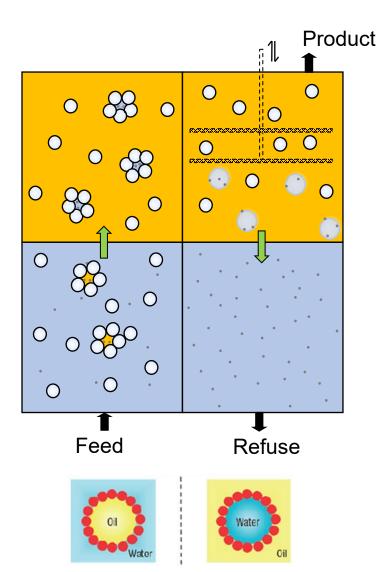

Produces all metals humans use

- Sulman and Piccard (1905)
- US Patent 793,808

Fine Coal Cleaning in the US

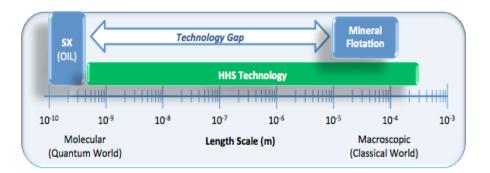
Dewatering by Displacement (DbD)

Yoon and Luttrell, US Patent 587,085 (1995)

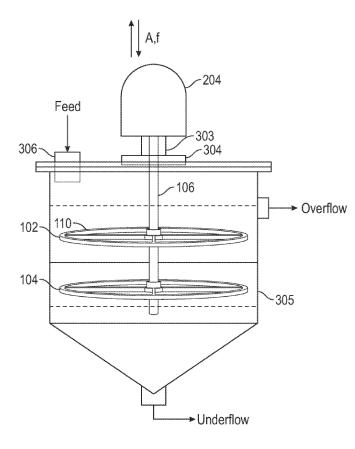


	Boiling	Heat of Vaporization		
Liquid	Point ¹ (°C)	kJ/mole ²	kJ/kg	
Water (H ₂ O)	100.0	40.7	2,257	
Butane (C_4H_{10})	-0.5	22.4	386	
Pentane (C_5H_{12})	36.1	25.8	358	
Hexane (C_6H_{14})	68.7	28.9	336	
Heptane (C ₇ H ₁₆)	98.4	31.7	317	

$$\Delta G_t = \gamma_{wo} \cos \theta < 0$$


Hydrophobic-Hydrophilic Separation (DHS)

Yoon, 2016; Yoon et al. (2017)



No lower particle size limit

- High contact angle
- High grade
 - Morganizer
- Dry product
 - DbD

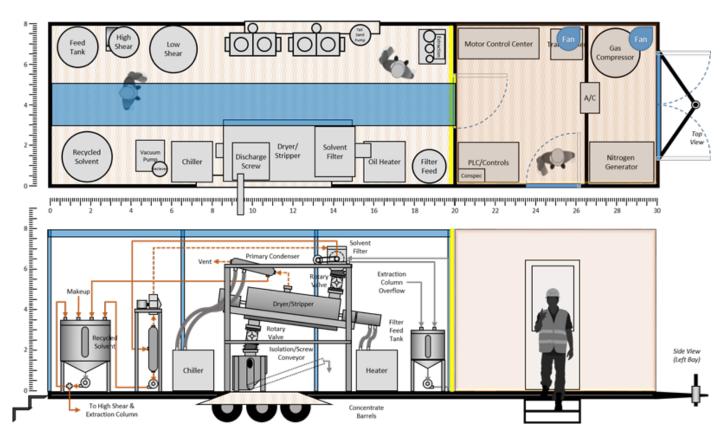
Screen Morganizer

HHS POC Unit at VT

POC-Scale Test Results

Coal Samples	Feed Ash	HHS Proc (%wt.		Reject Ash	Organic Recovery	Sample	
& Location	(%wt.)	Moisture	Ash	– (%wt.)	(%wt.)	Туре	
Eastern Kentucky Mine A – PCI/Thermal	67.5	6.8	3.8	88.3	91.6	Deslime Cyclone OF	
Southern WV Mine B – High Vol Met	53.0	8.5	3.4	84.4	89.5	Deslime Cyclone OF	
Western Pennsylvania Mine C – Thermal Pitt 8	40.4	3.9	4.3	85.8	95.5	Screen Bowl Effluent	
Southern WV Mine D – High Vol Met	53.6	3.5	3.9	88.0	95.4	Deslime Cyclone OF	
Northern WV Mine E – High Vol Met	13.7	4.9	5.0	76.3	97.7	Screen Bowl Effluent	
SW Virginia Mine F – Low Vol Met	7.0	3.8	2.1	64.8	97.6	Screen Bowl Effluent	
Southern WV Mine G – Low Vol Met	10.7	3.8	3.1	79.4	98.6	Screen Bowl Effluent	

HHS Pilot Plant (1 tph in Virginia)



No binder

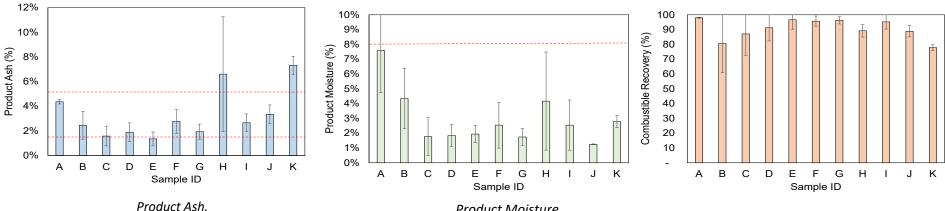
One-Skid Pilot Plant

Initial design concept of One-Skid HHS Pilot Plant

One-Skid Pilot Plant

Front

Back

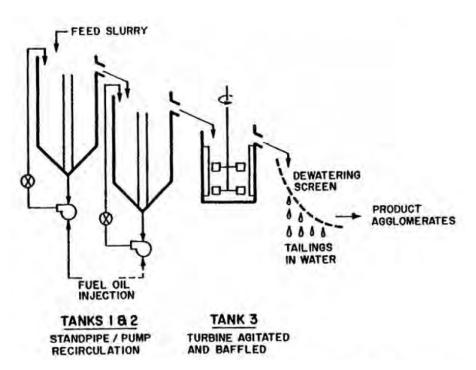

Virginia Tech - Mining and Minerals Engineering

Lab Tests for Warrior Met Coal

Sample Type	Feed Ash	HHS Product (%wt.)		Reject Ash	Organic Recovery
	(%wt.)	Moisture	Ash	- (%wt.)	(%wt.)
Screen Bowl Effluent	18.9	1.2	4.1	89.5	99.3
Screen Bowl Effluent	16.2	1.6	3.9	87.6	99.0
Thickener Under Flow ¹	49.7	8.4	5.3	82.5	86.5
Thickener Under Flow	54.9	4.8	6.6	85.8	88.9
Pond Sample	50.4	4.3	7.6	88.8	95.3

 1 Pre-screened at 100 mesh (150 μ m)

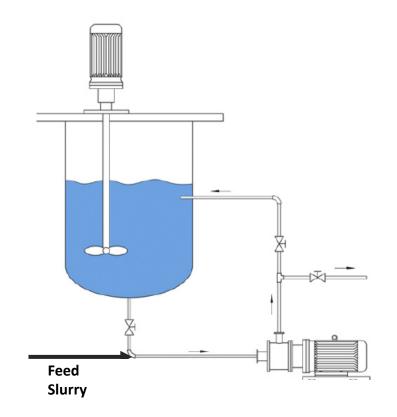
Lab Test Results


Product Ash. Dashed lines show upper threshold limits for super-clean (5%) and ultra-clean (1.5%) products. Product Moisture. Dashed lines show upper threshold limits for moisture objectives

Combustible Recovery.

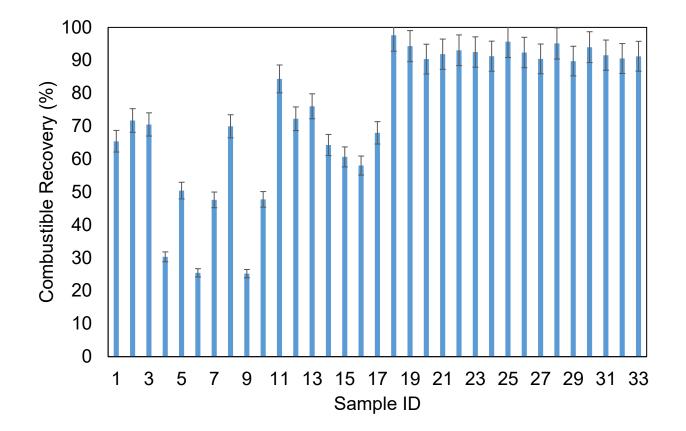
Mixing System

Standpipe + pump

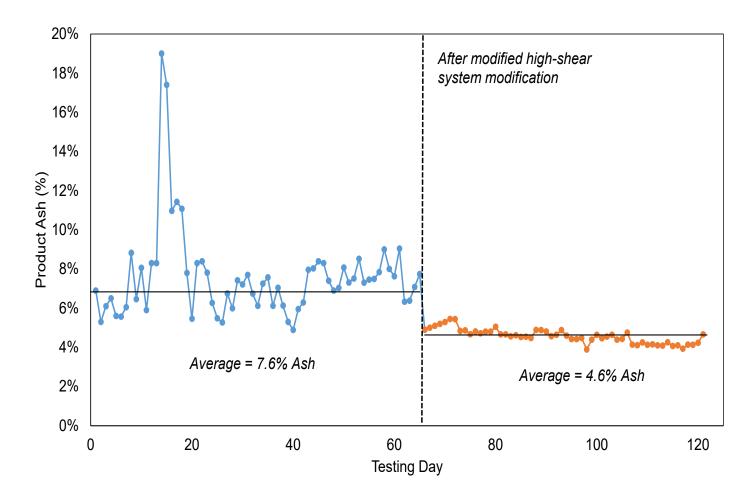

Capes (1979)

 $R = \frac{k\tau}{1+k\tau}$

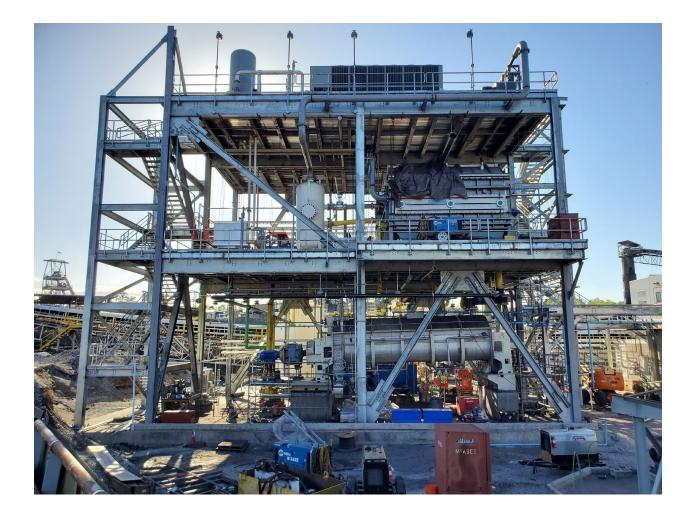
□ In-line HSM + impeller


Zhang *et al*. (2012)

15


Pilot Plant HHS Testing (Recovery)

Before and after retrofit of agglomeration unit



Pilot Plant HHS Testing (Product Ash)

Before and after retrofit of agglomeration unit

First Commercial Plant

Vibrating-Screen Morganizer

Night View Worrier Met, Alabama

Testing Results: Ultraclean – Bituminous

- Tested a decanter effluent sample from a West Virginia bituminous processing plant.
- Product ash content of <1.5% was obtained on a sample from December trials.
- Work is continuing to create additional ultraclean products for end-user product testing.

Pilot Test ID	Product Ash	Product Moisture
S-1	2.26%	3.25%
S-2	2.20%	20.1%
S-3	1.66%	2.70%
S-4	1.46%	2.80%
S-5	1.64%	12.7%

HHS vs. Two-Liquid Flotation (TLF) (Results obtained on Clean Anthracite Sample)

HHS Feed **Oil Agglomeration** Morganizer Product TLF Feed **Two-Liquid Flotation** Morganizer Product

Process flow diagram

Advantages of TLF

- Low energy consumption
 - High-shear mixing is not required
- Morganizer is more efficient
 - Low ash content in the product
- Simple flowsheet

Feed	Feed	Product			
Separation Method	D ₈₀ (μm)	Feed Ash (%)	Ash (%) ¹	Moisture (%)	Organic Recovery (%)
HHS	11 ¹	11.53	2.19	1.83	92.53
TLF			1.49	2.68	79.73
HHS	10 ²	6.34	2.21	2.32	97.48
TLF	102		1.46	2.93	93.56

¹The as-received sample was ground.

²The as-received sample was ground and pre-concentrated.

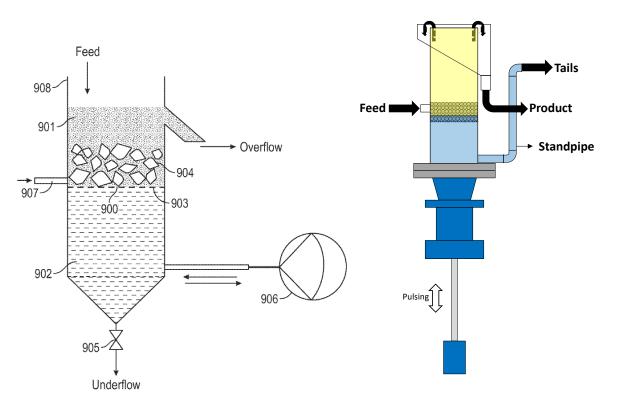
Ultraclean Coal (Arq)

Flotation product

• The 2nd-stage flotation product

HHS		HHS	Product	Refuse	HHS	
Feed D ₈₀ * (μm)	Feed Ash (%)	Proprietary Reagents	Ash** (%)	Moisture (%)	Ash (%)	Organic Recovery (%)
4.9	5.69	Reagent B	0.91 ⁴	1.50	79.26	99.06
4.9	5.69	Reagent C	0.72 ⁴	1.40	81.31	99.20
4.9	5.69	Reagent D	0.66 ⁴	1.50	81.13	99.18

Agglomeration product

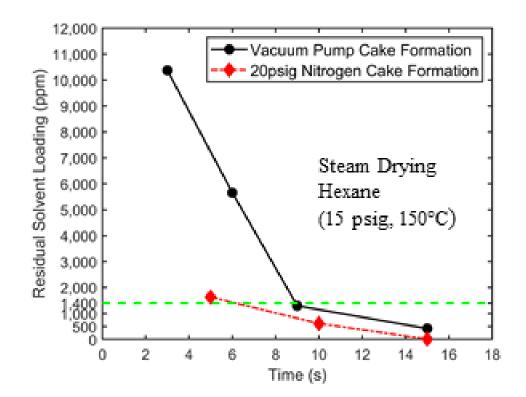

Single-stage agglomeration

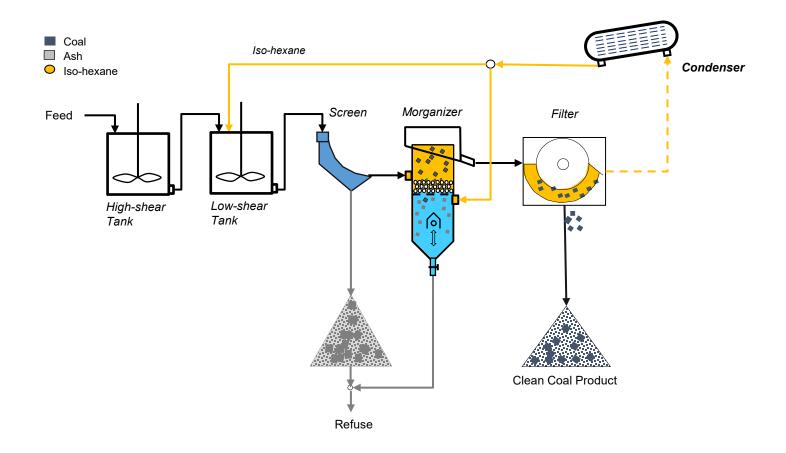
HHS	Feed	HHS Product		Organic R	ecovery (%)
D ₈₀ (µm)	Ash (%)	Ash (%)	Moisture (%)	HHS	Overall
3.6	5.89	0.80	1.98	95.23	88.00

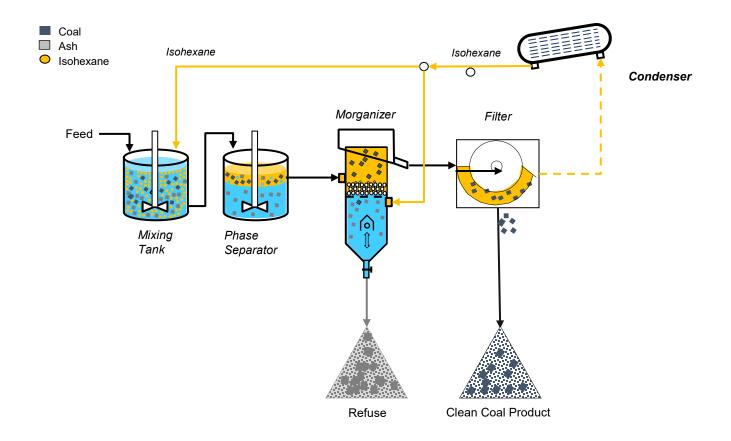
CCN5357

CCN2316

Jig Morganizer




Solvent Recovery (by Steam Stripping)


Vacuum Filter

HHS Flowsheet

TLF¹ Flowsheet

¹Two-liquid flotation

Summary

□ Virginia Tech has developed the HHS process

- Remove mineral matter and surface moisture simultaneously
- No lower particle size limit
- Produces practically dry products
- Mobile pilot-scale test unit has been designed and constructed.
 - Tested successfully to produce salable coal from fine coal wastes
 - <5% ash, <7% moisture</p>
 - Can produce low-ash and low-moisture feedstocks to produce high-value carbon products
 - <1.0 to 1.5% ash
- The pilot-scale test unit has been used to collect the scale-up information
 - First commercial plant near completion.
- Further improvements have been made
 - Jig Morganizer
 - Steam stripper
 - two-liquid flotation (TLF) process

Outcome

- Lower capital & operating costs
- Modular unit development
- Broader commercial deployment