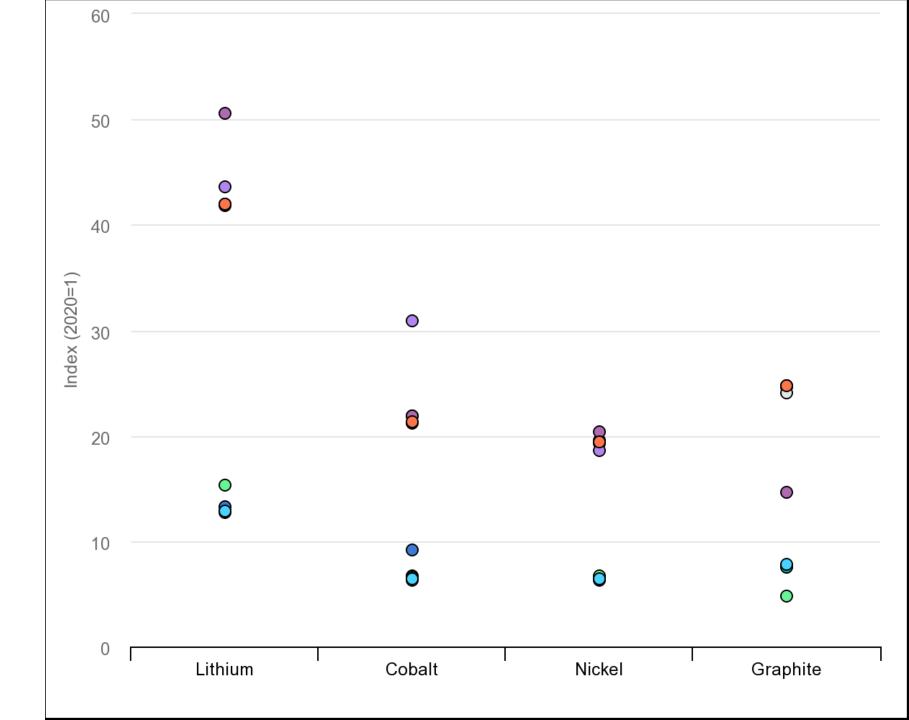
NETL Critical Minerals Research

Transformative Technology Focused on American Advantages

Burt Thomas, NETL Technical Portfolio Lead

Jessica Mullen, NETL Technology Mgr.

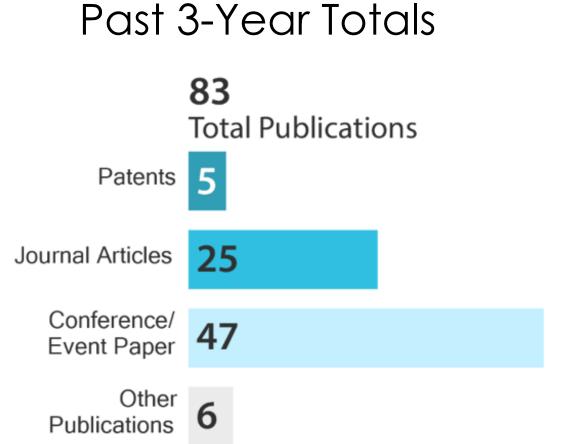
Unrealized Environmental Benefits


AMD, Coal Ash, Mine and Drilling Waste Resources That Will Grow into the Future

> Produced Water Mineral Carbonation Wastes

Legacy of Fossil Energy Leadership

Repurpose FE Infrastructure World's Largest Coal Mines World Leader in Drilling


IEA 2040 Demand Scenarios

NETL EY2022 Critical Minerals FWP

Following the Science to Deliver Unconventional Resources

New Project Areas

In Situ Recovery (ISR)

• minimize impacts, energy use

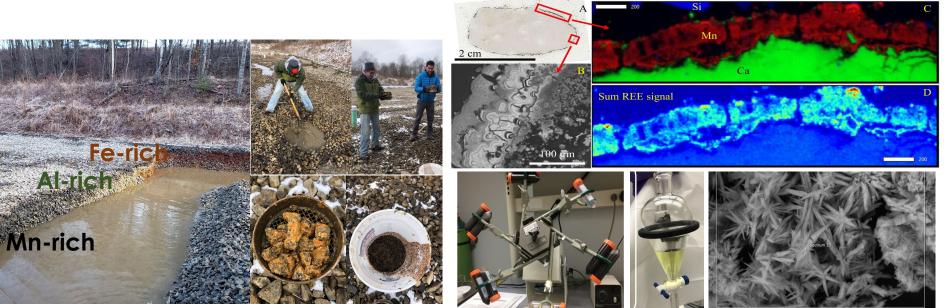
Produced Water (PW)

• Li, Co, REE co-produced with PW recovery and reuse

AMD treatment solids (AMD)

					FWP	Tat	4422	2762	1204		
NETL PI	Task #	CM Resource Data	EV19				4422 EY22		1304		Resource Target
Rose		URC – CM Resource Prediction Methodology		5 L115	L120						Resource rarget
Rose		Improve Prediction of REEs in Sedimentary/Coal Lithofacies									
Rose		Developing a CM Data Framework for CORE-CM Data, Waste and By-Products									
Kutchko		Lithium Brine Resource Characterization in US Shale Plays									PW
Ruteriko	10	Etandin Brine Resource endracterization in 05 Shale Hays				Tot.	0	0	0		
						101.	0	0			
NETL PI	Task #	Emerging CM Resources R&D	EY18	8 EY19	EY20	EY21	EY22	EY23	EY24	EY25	
Lopano	18	Ca-Ash Extraction Technology									Ash
Lopano	3	CM Recovery from AMD Solids using Adv. Characterization									AMD
Gulliver	4	Biologically Enhanced Redox for CM in AMD solids									AMD
Verba	5	Heap Leaching of underclay resources						0			Underclay
Thomas	6	In situ extraction from unconventional systems									ISR
Verba	7	CM Recovery from Mineral Carbonation (CDR) waste streams									CDR waste
						Tot.	0	0	0		
NETL PI		Enabling Technologies	EY18	3 EY19	EY20	EY21	EY22	EY23	EY24	EY25	
Gray	12	MUST Sorbent Development for Produced Water									PW
Gray	13	CHEFS Functionalized hollow fiber sorbents for critical mineral recovery	_								AMD
Dogan	11	Novel Alloy Materials From Domestically Abundant - REE									
Baltrus	14	Novel Fiberoptic Sensors for Critical Minerals									
McIntyre	15	LIBS downhole and in AMD streams									ISR
Lopano	16	Sorbent for Li recovery derived from AMD treatment solids									PW
Thomas	17	Li Carbonation of Produced Water									PW
			_			Tot.	0	0	0		
NETL PI	Task #	Critical Minerals Systems Analysis	EY18	3 EY19	EY20	EY21	EY22	EY23	EY24	EY25	
Summers		LCA Baseline for Conventional REE and Framework for Evaluating Others									
Summers		CM Embedded Demand Database									
Summers		Cost and Env. Perf. Optimization of CM Extraction using TEA and CORE CM									
Summers		Process Flowsheet Modeling									
						Tot.	0	0	0		

Task 3.0: Characterization Informed Recovery of Critical Minerals in Acid Mine Drainage Treatment Systems



Task Team Members

Principal Investigators: Christina Lopano, Mengling Stuckman

Other Key Personnel: Ward Burgess, Alison Fritz, Camille Sickler (Pitt), Ben Hedin (Hedin Environmental),

End Product:

- Utilize advanced characterization to determine binding conditions of CM in AMD treatment systems.
- Develop innovative & informed extractions targeting the major REE and CM-hosting solid fractions for efficient and economical REE/CM recovery.

Problem Area: Characterization informed extraction methodologies for Acid Mine Drainage, a coal byproduc 6

Task 4.0: Biological Recovery of Critical Minerals from Acid Mine Drainage Treatment Solids

End Product:

A biological

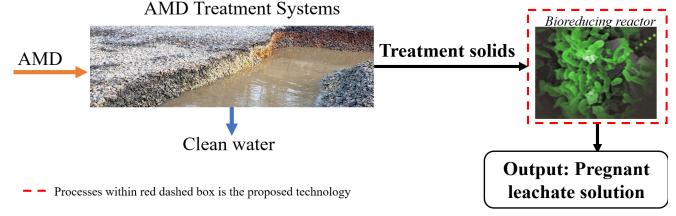
method to produce

CM pregnant

leachate solution

from AMD waste.

Task Team Members


Principal Investigator: Djuna Gulliver

Other Key Personnel: Nancy Trun, Rowan Terra, Christina Lopano, Mengling Stuckman, Meghan Brandi

- <u>Research Question</u>: Is there a way to release critical minerals (CMs) from acid mine drainage (AMD) treatment solids without chemical reducing agents?
- <u>Objective</u>: Develop a biological process to facilitate release of CMs from AMD treatment solids.

Benefits:

- 1. Capitalize a waste product.
- 2. Reduce the cost and environmental impact from conventional CM recovery methods.
- 3. Explore novel domestic resources and extraction technologies.

Task 5.0: Heap Leaching of Underclay Resources

Task Team Members

Principal Investigator: Circe Verba Other Key Personnel: Jon Yang, Sophia Bauer, Tom Paronish, Dustin Crandall, Alison Fritz, Priscilla Prem Characterize geologic source of REE amenable to recovery and commercial production Waste coal & ion absorbed clays Upscaling & Validation Disseminate

End Product:

- Mature and optimize the heap leach process for REE extraction from clays and legacy coal wastes to facilitate transfer of technology to U.S. industry.
- Disseminate data from REE extraction (organic and conventional methods) from legacy coal mining and related waste streams.

Technical Challenges: Extraction of CM are dependent on the feedstock composition and extraction technology. Laboratory testing showed heap leaching hydrodynamic challenges (e.g., porosity) and restricted CM recovery at larger scales.

Task 6.0: In Situ Extraction from Unconventional Systems

End Product:

Mineralogy, leach chemistry,

and accessibility evaluations

of non-mineable coal and

Task Team Members

Principal Investigator: Jon Yang

Other Key Personnel: Burt Thomas, Scott Montross, Sophia Bauer, Andrew Gordon, Thomas Paronish, Circe Verba, Dustin Crandall

metalliferous shale leading to potential in situ recovery pilot **EY22 EY23 EY24** test. Leach Chemistry Identify and Characterize Accessibility **Target CM Mineralization** 1. Test reactivity. 1. Ore/lixiviant contact Monitoring and forecasting Social Reagent consumption. ACCEPTANCE 1. Catalogue samples. strategies. FLUID MOVEMENT Gangue reactivity. External partnerships Environmenta Groundwater management 2. Characterize CM Operational windows. and hydrogeology are possible.* mineralization/enrichments. 2. In situ conditions (T/P/Eh). Lixiviant management and **Pilot Test Assessment** Economics reactive transport modelling 1. Develop external partners Resource characterisation Lixiviant system for potential pilot test LEACH CHEMISTRY Drilling, evaluations.** ACCESSIBILITY plasting, rock fracturing (Robinson, et al., 2016)

Task 7.0: CM Recovery from Mineral Carbonation Waste Streams

2022 2023 2024 Total Task Value (2022 – 2024) \$ \$ \$ \$ \$

Task Team Members

Principal Investigator: Circe Verba Other Key Personnel: Jon Yang, Sophia Bauer

Extracting the critical mineral content of these mafic and ultramafic rocks represents a valueadded proposition for the mineral carbonation process that could potentially defray costs of carbon capture while simultaneously providing a modest stream of critical minerals.

- Mineral resources include mafic and ultramafic rocks which can contain appreciable levels of critical minerals.
- Evaluate new or legacy materials: sulfide ore, olivine, serpentine, wollastonite.

End Product:

- Identify research needs related to CM recovery from diverse mineralization feedstocks
- Recover CM while protecting mineralization potential

10

Technical Challenges: Must find a suitable matic feedstock/waste material that contains both sufficient CM and geochemistry is
 Conducive to carbon capture strategies. NETL legacy materials will serve as a first look to establish proof of concept extraction method (e.g., alkaline lixiviant).

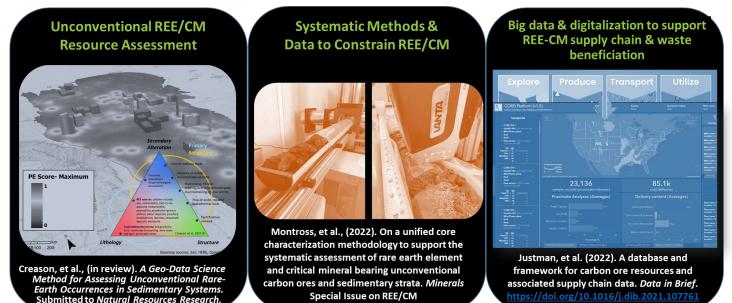
Task 8. Critical Minerals Systems Analysis

Understand Unconventional Costs, Performance, and Environmental Footprint U

End Product:

- Identify cost and performance R&D needs
- Understand the CM supply chain and current markets for existing products,
- Evaluate the economic benefits of in-house transformational processes within the CM supply chain.
- Subtask 1 LCA Baseline for Conventional REE and Framework for Evaluating Others
 This work builds on the literature review related to commercial REE LCAs and add an LCA analysis related to the
 use of unconventional waste feedstocks (i.e., fly ash and AMD) to determine the environmental footprint associated
 with the utilization of coal related wastes as a feedstock for the extraction of REEs.
- Subtask 2 CM Embedded Demand Database
 This work is updating the current REE embedded demand database to highlight impacts of the pandemic and expand to include select CMs related to battery manufacturing (i.e., Li, graphite, Co)
- Subtask 3 Process Flowsheet Modeling This work will continue to develop an independent baseline cost estimate for the extraction of REEs from a specific unconventional waste feedstock. This will include expanding the cost estimate for recovering REEs from coal refuse and develop a cost estimate for the extraction of REE from AMD with potential to begin developing an estimate for Li extraction from produced waters.

Task 9.0: Critical Minerals Resource Data



Task Team Members

Principal Investigator: Kelly Rose

Co-Principal Investigators: Gabe Creason (9.1), Scott Montross, Devin Justman

Other Key Personnel: Patrick Wingo, Andrew Gordon, Rachel Yesenchak, ITSS EDX personnel

End Product:

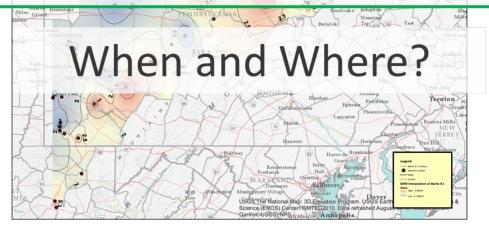
- A systematic method for predicting and assessing unconventional CM resources.
- A systematic method for CM data collection and resource characterization.
- A virtual, online platform for visualizing and analyzing CM supply-chain and waste beneficiation.

12

Task 10.0: Critical Mineral Resource Characterization in U.S. Shale Plays

2022 2023 2024 Total Task Value (2022 – 2024) \$ \$ \$ \$

Task Team Members


Principal Investigators: Barbara Kutchko, Justin Mackey

Other Key Personnel: Mengling Stuckman, Ale Hakala, Christina Lopano

Objective: Fill lithium resource knowledge gaps through data collection and analysis of lithium brine resources to identify basin-specific/time-specific trends associated with U.S. domestic shale plays.

Year	Milestone				
2022	Characterization lithium brine resource estimates within the Marcellus shale.				
2022	Establish relationships with industry and regulatory stakeholders for data acquisition in other major shale plays.				
2023	Characterize lithium brine resource potential in major U.S. domestic shale plays.				

End Product: This work will culminate in a dataset and report detailing trends and quantity estimations of lithium brine resources from U.S. shale plays.

Figure 10-1: Barite mineral saturation indices modeled from published Marcellus production brine chemical analysis (Mackey, et al., 2021).

Mackey, J., Gardiner, J., Kutchko, B., Brandi, M., Fazio, J., and Hakala, A., "Characterizing mineralization on low carbon steel exposed to aerated and degassed synthetic hydraulic fracturing fluids," *Journal of Petroleum Science and Engineering*, (2021) 108514, <u>https://doi.org/10.1016/j.petrol.2021.108514</u>.

Technical Challenges: Identifying and filling knowledge gaps of shale related lithium resources.

Technical Challenges: Reducing the cost-to-benefit ratio of domestic REE production.

2024

Task 11.0: Novel Materials from Domestically Abundant REEs

2023

Task Team Members

2022

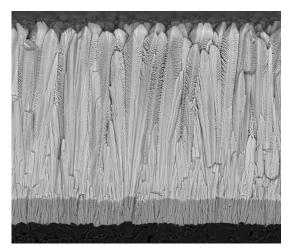
Principal Investigator: Richard Oleksak

Other Key Personnel: Paul Jablonski, Martin Detrois, Michael Gao, Omer Dogan, Kyle Rozman, Shiqiang Hao

Two technologies are being pursued to increase the usage of domestically abundant REEs and/or enable the substitution of domestically scarce REEs:

(1) Hydrogen resistant pipeline steels

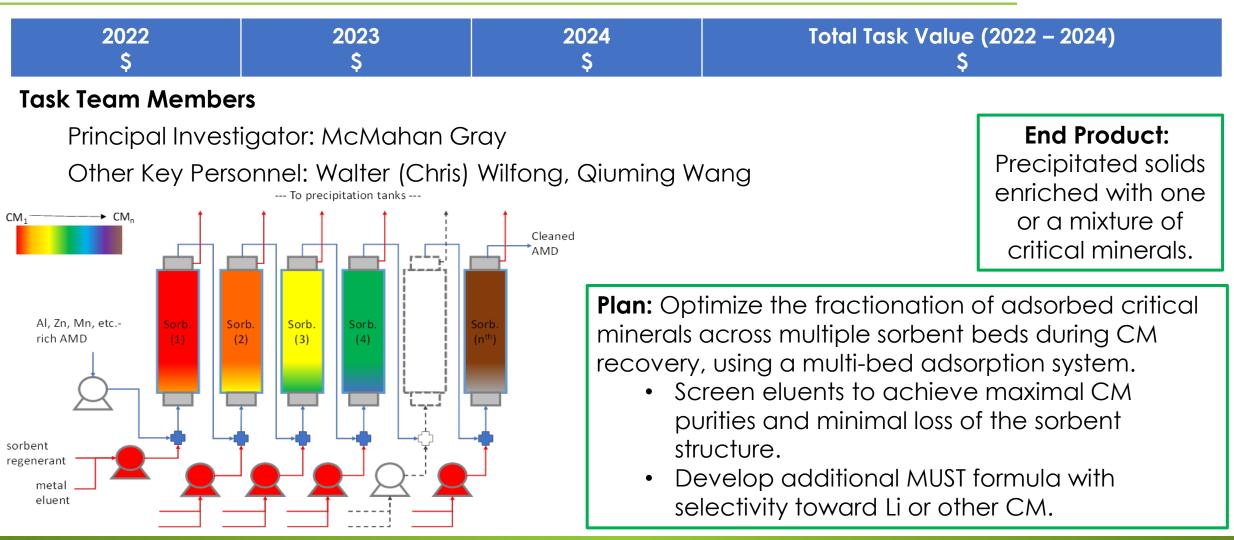
anaku



Total Task Value (2022 – 2024)

(2) Environmental

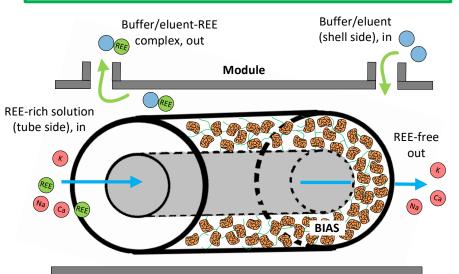
barrier coatings


End Product: New materials applications for domestically abundant REEs.

Task 12.0: MUST Sorbent Development for Produced Waters

Task 13.0: CHEFS Functionalized Hollow Fiber Sorbents for Critical Mineral Recovery

Task Team Members


Principal Investigator: McMahan Gray

Other Key Personnel: Qiuming Wang, Shouliang Yi, Walter Wilfong

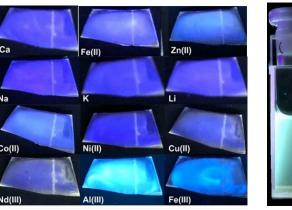
- Determine concentration of target critical metals (CMs—Co, Cu, Al, REEs, etc.) and competing ions (fouling metals, heavy metals, and anions) from an authentic AMD solution.
- Characterize ideal single and mixed CM solutions for sorbent CMs selectivity and capacity studies.
- Refine sorbent formulations with different ratios of amine/crosslinker for their leach resistance to the solvent used in CHEFS preparation.
- Refine sorbent formulations to give at least 90% uptake of critical metals from RI ideal or authentic AMD solution.
- Determine a dope composition compatible with sorbent functional groups.
- Refine sorbent wt% in a dope to balance the metal uptake performance-CHEFS mechanical strength.
- Refine CHEFS solvent exchange process for an optimized CMs uptake.
- Optimize a CHEFS formula with > 90% recovery of critical metals from ideal or simulated AMD solutions in batch or flowing conditions.

End Product:

Optimize a CHEFS formula with minimal amine leaching and achieving > 90% recovery of CMs (Co, Cu, Al, REEs, etc.) from ideal or simulated AMD solutions.

Task 14.0: Novel Fiber Optic Sensors for Critical Minerals

2022 \$

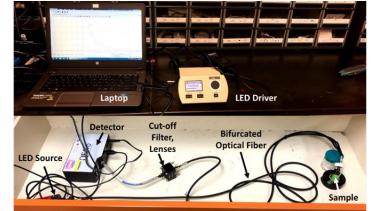

2023 \$

2024

Total Task Value (2022 – 2024) Sk

Task Team Members

Principal Investigator: John Baltrus Other Key Personnel: Scott Crawford



0 mM Co 0.1 mM Co 0.1 mM Co 10 mM Co

End Product:

Optically-based inexpensive, portable, and rapid detectors for REEs and other critical metals.

Plan Overview: Demonstrate a device for measurement of REEs and other critical elements in liquid streams at low ppm or ppb levels using an optical probe by identifying, synthesizing, and incorporating novel photoluminescent sensing materials targeting specific critical elements. This execution year will focus on Co and AI detection, testing of field samples, and development of other detection platforms, such as test strips and sensitizers specific to other critical elements, as time permits.

Technical Challenges: Low-cost optical-based detection of low ppm or ppb levels of critical elements in process streams.

Task 15.0: LIBS Downhole and in AMD Streams

2022	2023	2024	Total Task Value (2022 – 2024)
\$	\$	\$	\$

Task Team Members

Principal Investigator: Dustin McIntyre

Other Key Personnel: Scott Montross, Dan Hartzler, Jonathan Yang, Kelly Rose

- The objective of this project is to determine the feasibility of using the subsurface LIBS sensor as a downhole REE measurement device for coal seams in the Powder River Basin.
- Initial work will focus on the feasibility of measurements with of a coal core within a commercial LIBS unit, as well as with the miniaturized LIBS probe in the laboratory setting.
- Additional work will focus on how well the miniaturized LIBS probe can measure REEs in AMD fluids.
- Continued work will explore the adaptation of the current subsurface probe to an open wellbore for solids measurements along the sidewall.

End Product: Functional downhole REE measurement system.

Task 16.0: Sorbent for Li Recovery Derived from Acid Mine Drainage Treatment Solids

2022 2023 2024 Total Task Value (2022 – 2024) **Task Team Members** End Product: Principal Investigators: Christina Lopano, Mengling Stuckman A low-cost Li sorbent synthesized from AMD treatment wastes to Other Key Personnel: Wei Xiong generate robust Li concentrate from different oil and gas (O&G) produced waters with various total dissolved solids, Li, and Ca contents. Peak identification and summary in table AMD solids Raman spectroscopy Data processing Sample
 St1
 St1
 St2

 TS6
 TS8
 TS9
 TS1
 Approach: Manganite 0 0 0 0 ٥ 0 0 ٥ 0 0 Vernadite 0 ٥ 0 0 ٥ 0 **EY22:** AMD waste characterization Todorokite ٥ 0 0 0 0 0 0 0 0 0 0 0 and preliminary Li sorbent laboratory Hausmannite ٥ synthesis. Vernadite Manganite [LiAl₂(OH)₆] **EY23:** Li sorbent development, optimization, and characterization. MnO₂*nH₂O MnO(OH) (layer) (tunnel) Todorokite **EY24:** Li selectivity testing in complex brine water matrices and further Hausmannite [LiAl2(OH)6] Ca,Na,K),(M $Mn^{2+}Mn_{2}^{3+}O_{4}$ $^{+}, Mn^{3+})_{6}O_{12}$ (spinel) pyrolusite type structure γ -MnO₂ (left) or the optimization. *3.5H₂O schematic of γ -AlO₂ (right) for Li recovery (tunnel) 19

Task 17.0: Li Extraction via Carbonation of Produced W

Task description

- **Technology:** Brine carbonation in ambient environment by controlled CO₂ injection that causes critical mineral precipitation (base: US10,315,926 and US16/537,985)
- Questions to be addressed:
 - Scalable
 - Corecovery of other valuable minerals

Expected outcomes:

- The successful implementation is expected to:
 - Enhance domestic critical mineral supply chains
 - Make use of industrial byproduct including O&G produced water and CO₂
 - Promote carbon sequestration

End Product:

A low capex, low opex, and environmentally benign process that can simultaneously extract Li and generate Li_2CO_3 directly in brines, O&G produced water, etc., without adsorbent (or ion exchange), absorbents, membranes, acid, freshwater, separate carbonation step.

Task 18.0: REE/CM Extraction Process for Calcium-Rich Coal Ash

2022 2023 2024 Total Task Value (2022 – 2024) \$ \$ \$ \$ \$

Task Team Members

Principal Investigators: Christina Lopano, Mengling Stuckman (LRST)

Other Key Personnel: Ward Burgess, Dan Ross, Alison Fritz, Djuna Gulliver, Bret Howard, Meghan Brandi, Barbara Kutchko

End Products:

- Understanding of REE distributions in Ca-rich ash.
- Optimization of extractions and separations for Ca-rich ash, recommendations for different types (BA, FA, LA).
- A preliminary assessment of the potential for using CO₂ derived biolixiviants for extraction.
- Evaluate the effectiveness of MSX process to selectively recover REY from dilute leachates produced by sequential leaching.

